E-Print Archive

There are 4290 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Testing magnetofrictional extrapolation with the Titov-D?moulin model of solar active regions View all abstracts by submitter

Gherardo Valori   Submitted: 2010-05-04 01:58

We examine the nonlinear magnetofrictional extrapolation scheme using the solar active region model by Titov and D?moulin as test field. This model consists of an arched, line-tied current channel held in force-free equilibrium by the potential field of a bipolar flux distribution in the bottom boundary. A modified version, having a parabolic current density profile, is employed here. We find that the equilibrium is reconstructed with very high accuracy in a representative range of parameter space, using only the vector field in the bottom boundary as input. Structural features formed in the interface between the flux rope and the surrounding arcade-''hyperbolic flux tube'' and ''bald patch separatrix surface''-are reliably reproduced, as are the flux rope twist and the energy and helicity of the configuration. This demonstrates that force-free fields containing these basic structural elements of solar active regions can be obtained by extrapolation. The influence of the chosen initial condition on the accuracy of reconstruction is also addressed, confirming that the initial field that best matches the external potential field of the model quite naturally leads to the best reconstruction. Extrapolating the magnetogram of a Titov-D?moulin equilibrium in the unstable range of parameter space yields a sequence of two opposing evolutionary phases which clearly indicate the unstable nature of the configuration: a partial buildup of the flux rope with rising free energy is followed by destruction of the rope, losing most of the free energy.

Authors: G. Valori, B. Kliem, T. Török, V. S. Titov
Projects: None

Publication Status: A&A (accepted)
Last Modified: 2010-05-04 12:44
Go to main E-Print page  Selective spatial damping of propagating kink waves due to resonant absorption  Numerical simulations of spicule formation in the solar atmosphere  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare
Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University