E-Print Archive

There are 4620 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The sub-arcsecond hard X-ray structure of loop footpoints in a solar flare View all abstracts by submitter

Eduard Kontar   Submitted: 2010-05-22 10:41

The newly developed X-ray visibility forward fitting technique is applied to Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data of a limb flare to investigate the energy and height dependence on sizes, shapes, and position of hard X-ray chromospheric footpoint sources. This provides information about the electron transport and chromospheric density structure. The spatial distribution of two footpoint X-ray sources is analyzed using PIXON, Maximum Entropy Method, CLEAN and visibility forward fit algorithms at nonthermal energies from sim 20 to sim 200 keV. We report, for the first time, the vertical extents and widths of hard X-ray chromospheric sources measured as a function of energy for a limb event. Our observations suggest that both the vertical and horizontal sizes of footpoints are decreasing with energy. Higher energy emission originates progressively deeper in the chromosphere consistent with downward flare accelerated streaming electrons. The ellipticity of the footpoints grows with energy from sim 0.5 at sim 20 keV to sim 0.9 at sim 150 keV. The positions of X-ray emission are in agreement with an exponential density profile of scale height sim 150 km. The characteristic size of the hard X-ray footpoint source along the limb is decreasing with energy suggesting a converging magnetic field in the footpoint. The vertical sizes of X-ray sources are inconsistent with simple collisional transport in a single density scale height but can be explained using a multi-threaded density structure in the chromosphere.

Authors: Kontar, E. P., Hannah, I. G., Jeffrey, N. L. S., Battaglia, M.
Projects: RHESSI

Publication Status: Submitted to ApJ
Last Modified: 2010-05-23 14:14
Go to main E-Print page  Observational Evidence of Back-reaction on the Solar Surface Associated with Coronal Magnetic Restructuring in Solar Eruptions  Accelerating waves in polar coronal holes as seen by EIS and SUMER  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
High-altitude Spider-type Prominence above the Magnetic Null Point
Non-Neutralized Electric Currents as a Proxy for Eruptive Activity in Solar Active Regions
Formation and Dynamics in an Observed Preeruptive Filament
Unveiling the spectacular over 24-hour flare of star CD-36 3202
The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains
Coronal dimmings as indicators of early CME propagation direction
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
Study of Time Evolution of Thermal and Nonthermal Emission from an M-class Solar Flare
Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weather-Oriented Research
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Defining the Middle Corona
First Results for Solar Soft X-Ray Irradiance Measurements from the Third-generation Miniature X-Ray Solar Spectrometer
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
Using Potential Field Extrapolations to Explore the Origin of Type II Spicules
Phase mixed Alfvén waves in partially ionised solar plasmas
Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion
A model of failed solar eruption initiated and destructed by magnetic reconnection
Energetics of a solar flare and a coronal mass ejection generated by a hot channel eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University