E-Print Archive

There are 4102 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
On the Doppler Shift and Asymmetry of Stokes Profiles of Photospheric FeI and Chromospheric MgI Lines View all abstracts by submitter

Na Deng   Submitted: 2010-06-20 19:22

We analyzed the full Stokes spectra using simultaneous measurements of the photospheric (FeI 630.15 and 630.25 nm) and chromospheric (MgI b2 517.27 nm) lines. The data were obtained with the HAO/NSO Advanced Stokes Polarimeter, about a near disc center sunspot region, NOAA AR 9661. We compare the characteristics of Stokes profiles in terms of Doppler shifts and asymmetries among the three spectral lines, which helps us to better understand the chromospheric lines and the magnetic and flow fields in different magnetic regions. The main results are: (1) For penumbral area observed by the photospheric FeI lines, Doppler velocities derived from Stokes I (Vi) are very close to those derived from linear polarization profiles (Vlp) but significantly different from those derived from Stokes V profiles (Vzc), which provides direct and strong evidence that the penumbral Evershed flows are magnetized and mainly carried by the horizontal magnetic component. (2) The rudimentary inverse Evershed effect observed by the MgI b2 line provides a qualitative evidence on its formation height that is around or just above the temperature minimum region. (3) Vzc and Vlp in penumbrae and Vzc in pores generally approach their Vi observed by the chromospheric MgI line, which is not the case for the photospheric FeI lines. (4) Outer penumbrae and pores show similar behavior of the Stokes V asymmetries that tend to change from positive values in the photosphere (FeI lines) to negative values in the low chromosphere (MgI line). (5) The Stokes V profiles in plage regions are highly asymmetric in the photosphere and more symmetric in the low chromosphere. (6) Strong red shifts and large asymmetries are found around the magnetic polarity inversion line within the common penumbra of the Delta spot. We offer explanations or speculations to the observed discrepancies between the photospheric and chromospheric lines in terms of the three-dimensional structure of the magnetic and velocity fields. This study thus emphasizes the importance of spectro-polarimetry using chromospheric lines.

Authors: Na Deng, Debi Prasad Choudhary, K. S. Balasubramaniam
Projects: National Solar Observatory (Sac Peak)

Publication Status: accepted to ApJ
Last Modified: 2010-06-21 09:29
Go to main E-Print page  Simulation of the Formation of a Solar Active Region  A simple model for the evolution of multi-stranded coronal loops  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature
Modelling Mg II During Solar Flares, I: Partial Frequency Redistribution, Opacity, and Coronal Irradiation
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University