E-Print Archive

There are 4102 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Sideways displacement of penumbral fibrils by the solar flare on 2006 December 13 View all abstracts by submitter

Leping Li   Submitted: 2010-06-30 20:05

Flares are known to restructure the magnetic field in the corona and to accelerate the gas between the field lines, but their effect on the photosphere is less well studied. New data of the Solar Optical Telescope (SOT) onboard Hinode provide unprecedented opportunity to uncover the photospheric effect of a solar flare, which associates with an active region NOAA AR 10930 on 2006 December 13. We find a clear lateral displacement of sunspot penumbral regions scanned by two flare ribbons. In the impulsive phase of the flare, the flare ribbons scan the sunspot at a speed of around 18 km s-1, derived from Ca II and G-band images. We find instantaneous horizontal shear of penumbral fibrils, with initial velocities of about 1.6 km s-1, produced when a flare ribbon passes over them. This velocity decreases rapidly at first, then gradually decays, so that about one hour later, the fibrils return to a new equilibrium. During the one hour interval, the total displacement of these fibrils is around 2.0 Mm, with an average shear velocity of 0.55 km s-1. This lateral motion of the penumbral fibrils indicates that the magnetic footpoints of these field lines being rearranged in the corona also move.

Authors: Jun Zhang, Leping Li, S. K. Solanki
Projects: Hinode/SOT

Publication Status: Accepted by ApJL
Last Modified: 2010-07-02 14:55
Go to main E-Print page  Deflection of coronal rays by remote CMEs: shock wave or magnetic pressure?   The phenomenon of Alfvenic vortex shedding  Edit Entry  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature
Modelling Mg II During Solar Flares, I: Partial Frequency Redistribution, Opacity, and Coronal Irradiation
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University