E-Print Archive

There are 4499 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Observational evidence of resonantly damped propagating kink waves in the solar corona View all abstracts by submitter

Jaume Terradas   Submitted: 2010-07-08 01:12

In this Letter we establish clear evidence for the resonant absorption damping mechanism by analyzing observational data from the novel Coronal Multi-Channel Polarimeter (CoMP). This instrument has established that in the solar corona there are ubiquitous propagating low amplitude (approx1 km s-1) Alfvénic waves with a wide range of frequencies. Realistically interpreting these waves as the kink mode from magnetohydrodynamic (MHD) wave theory, they should exhibit a frequency dependent damping length due to resonant absorption, governed by the TGV relation showing that transversal plasma inhomogeneity in coronal magnetic flux tubes causes them to act as natural low-pass filters. It is found that observed frequency dependence on damping length (up to about 8 mHz) can be explained by the kink wave interpretation and furthermore, the spatially averaged equilibrium parameter describing the length scale of transverse plasma density inhomogeneity over a system of coronal loops is consistent with the range of values estimated from TRACE observations of standing kink modes.

Authors: G. Verth, M. Goossens, J. Terradas
Projects: None

Publication Status: ApJL (accepted)
Last Modified: 2010-07-09 19:22
Go to main E-Print page  Multiwavelength imaging and spectroscopy of chromospheric evaporation in an M-class solar flare  Shocks and Thermal Conduction Fronts in Retracting Reconnected Flux Tubes  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?
Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations
Slow magnetoacoustic oscillations in stellar coronal loops
Kink Oscillation of a Flux Rope During a Failed Solar Eruption
A publicly available multi-observatory data set of an enhanced network patch from the Photosphere
Type IV Radio Bursts and Associated Active Regions in the Sunspot Cycle 24
Theory of Fluid Instabilities in Partially Ionized Plasmas: An Overview
Quasiperiodic Energy Release and Jets at the Base of Solar Coronal Plumes
The Coupling of an EUV Coronal Wave and Ion Acceleration in a Fermi-LAT Behind-the-Limb Solar Flare
Reconciling Power Law Slopes in Solar Flare and Nanoflare Size Distributions
A Model of Homologous Confined and Ejective Eruptions Involving Kink Instability and Flux Cancellation
Detection of stellar-like abundance anomalies in the slow solar wind
Magnetosheath jet occurrence rate in relation to CMEs and SIRs
Microwave Perspective on Magnetic Breakout Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University