E-Print Archive

There are 4099 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Evolution of twist-shear and dip-shear during X-class flare of 13 December 2006: Hinode observations View all abstracts by submitter

Sanjay Gosain   Submitted: 2010-07-15 04:34

The non-potentiality (NP) of the solar magnetic fields is measured tradi- tionally in terms of magnetic shear angle i.e., the angle between observed and potential field azimuth. Here, we introduce another measure of shear that has not been studied earlier in solar active regions, i.e. the one that is associated with the inclination angle of the magnetic field. This form of shear, which we call as the ?dip-shear?, can be calculated by taking the difference between the observed and potential field inclination. In this Letter, we study the evolution of dip-shear as well as the conventional twist-shear in a -sunspot using high- resolution vector magnetograms from Hinode space mission. We monitor these shears in a penumbral region located close to flare site during 12 and 13 December 2006. It is found that: (i) the penumbral area close to the flaring site shows high value of twist-shear and dip-shear as compared to other parts of penumbra, (ii) after the flare the value of dip-shear drops in this region while the twist-shear in this region tends to increase after the flare, (iii) the dip-shear and twist-shear are correlated such that pixels with large twist-shear also tend to exhibit large dip- shear, and (iv) the correlation between the twist-shear and dip-shear is tighter after the flare. The present study suggests that monitoring twist-shear during the flare alone is not sufficient but we need to monitor it together with dip-shear.

Authors: Sanjay Gosain and P. Venkatakrishnan
Projects: Hinode/SOT

Publication Status: Accepted for publication in ApJ Letters
Last Modified: 2010-07-15 07:47
Go to main E-Print page  The Magnetic Field at the Inner Boundary of the Heliosphere  Around Solar Minimum  On the estimate of magnetic non-potentiality of sunspots derived using SOT/SP observations: Effect of polarimetric noise  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University