E-Print Archive

There are 4524 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Criteria for Flux Rope Eruption: Non Equilibrium versus Torus Instability View all abstracts by submitter

Pascal Demoulin   Submitted: 2010-06-09 07:05

The coronal magnetic configuration of an active region typically evolves quietly during few days before becoming suddenly eruptive and launching a coronal mass ejection (CME). The precise origin of the eruption is still debated. Among several mechanisms, it has been proposed that a loss of equilibrium, or an ideal magneto-hydrodynamic (MHD) instability such as the torus instability, could be responsible for the sudden eruptivity. Distinct approaches have also been formulated for limit cases having circular or translation symmetry. We revisit the previous theoretical approaches, setting them in the same analytical framework. The coronal field results from the contribution of a non-neutralized current channel added to a background magnetic field, which in our model is the potential field generated by two photospheric flux concentrations. The evolution on short Alfvénic time scale is governed by ideal MHD. We show analytically first that the loss of equilibrium and the stability analysis are two different views of the same physical mechanism. Second, we identify that the same physics is involved in the instability of circular and straight current channels. Indeed, they are just two particular limiting case of more general current paths. A global instability of the magnetic configuration is present when the current channel is located at a coronal height, h, large enough so that the decay index of the potential field, (d ln |Bp|) / (d ln h) is larger than a critical value. At the limit of very thin current channels, previous analysis found a critical decay index of 1.5 and 1 for circular and straight current channels, respectively. However, with current channels being deformable and as thick as expected in the corona, we show that this critical index has similar values for circular and straight current channels, typically in the range [1.1,1.3].

Authors: P. Demoulin and G. Aulanier
Projects:

Publication Status: Astrophysical Journal 718 (2010) 1388-1399
Last Modified: 2010-07-16 07:11
Go to main E-Print page  Criteria for Flux Rope Eruption: Non Equilibrium versus Torus Instability   From large-scale loops to the sites of dense flaring loops: preferential conditions for long-period pulsations in solar flares  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University