E-Print Archive

There are 4036 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Toward understanding the early stages of an impulsively accelerated coronal mass ejection View all abstracts by submitter

Spiros Patsourakos   Submitted: 2010-08-09 08:03

The expanding magnetic flux in coronal mass ejections (CMEs) often forms a cavity. A spherical model is simultaneously fit to STEREO EUVI and COR1 data of an impulsively accelerated CME on 25 March 2008, which displays a well-defined extreme ultraviolet (EUV) and white-light cavity of nearly circular shape already at low heights ~ 0.2 Rs. The center height h(t) and radial expansion r(t) of the cavity are obtained in the whole height range of the main acceleration. We interpret them as the axis height and as a quantity proportional to the minor radius of a flux rope, respectively. The three-dimensional expansion of the CME exhibits two phases in the course of its main upward acceleration. From the first h and r data points, taken shortly after the onset of the main acceleration, the erupting flux shows an overexpansion compared to its rise, as expressed by the decrease of the aspect ratio from k=h/r ~ 3 to k ~ (1.5-2.0). This phase is approximately coincident with the impulsive rise of the acceleration and is followed by a phase of very gradual change of the aspect ratio (a nearly self-similar expansion) toward k ~ 1.5 at h ~ 10 Rs. The initial overexpansion of the CME cavity can be caused by flux conservation around a rising flux rope of decreasing axial current and by the addition of flux to a growing, or even newly forming,flux rope by magnetic reconnection. Further analysis will be required to decide which of these contributions is dominant. The data also suggest that the horizontal component of the impulsive cavity expansion (parallel to the solar surface) triggers the associated EUV wave, which subsequently detaches from the CME volume.

Authors: S. Patsourakos, A. Vourlidas, B. Kliem
Projects: STEREO

Publication Status: A&A, 2010, in press
Last Modified: 2010-08-09 08:03
Go to main E-Print page  Modeling UV and X-Ray Emission in a Post-CME Current Sheet  Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source. I. Observations and interpretation  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University