E-Print Archive

There are 4053 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source. I. Observations and interpretation View all abstracts by submitter

Bernhard Kliem   Submitted: 2010-08-09 03:21

Imaging microwave observations of an eruptive, partially occulted solar flare on 18 April 2001 suggest that the global structure of the event can be described by the helical kink instability of a twisted magnetic flux rope. This model is suggested by the inverse gamma shape of the source exhibiting crossing legs of a rising flux loop and by evidence that the legs interact at or near the crossing point. The interaction is reflected by the location of peak brightness near the crossing point and by the formation of superimposed compact nonthermal sources most likely at or near the crossing point. These sources propagate upward along both legs, merge into a single, bright source at the top of the structure, and continue to rise at a velocity >1000 km s-1. The compact sources trap accelerated electrons which radiate in the radio and hard X-ray ranges. This suggests that they are plasmoids, although their internal structure is not revealed by the data. They exhibit variations of the radio brightness temperature at a characteristic time scale of ~ 40 s, anti-correlated to their area, which also support their interpretation as plasmoids. Their propagation path differs from the standard scenario of plasmoid formation and propagation in the flare current sheet, suggesting the helical current sheet formed by the instability instead.

Authors: M. Karlický and B. Kliem

Publication Status: Solar Physics, in press
Last Modified: 2010-08-09 08:33
Go to main E-Print page  Toward understanding the early stages of an impulsively accelerated coronal mass ejection  Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source. II. Numerical modeling  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear waves in a non-equilibrium ionisation partially ionised plasma
How Many Twists Do Solar Coronal Jets Release?
Different Signatures of Chromospheric Evaporation in Two Solar Flares Observed with IRIS
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University