E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Impulsively Generated Wave Trains in a Solar Coronal Loop View all abstracts by submitter

Petr Jelinek   Submitted: 2010-09-30 06:54

Impulsively generated fast magnetoacoustic wave trains in a solar coronal loop are numerically studied. The problem is considered as 2-D in space, and for the description, the full set of magnetohydrodynamic (MHD) equations is used. The numerical solution of the MHD equations is performed by means of the Lax?Wendroff algorithm on a uniformly structured mesh. The wavelet analysis of the obtained wave trains shows out the typical tadpole shapes, i.e., a narrow tail followed by a broadband head. In this paper, we discuss the propagation speed and periods of the wave trains as well as the shapes of the tadpoles in dependence on the plasma beta parameter. These studies are very important in connection with the observations because the tadpole signatures, firstly discovered during the solar eclipse in 1999 by the SECIS instrument, have been recently recognized also in decimetric type IV radio events by the Ondřejov; radiospectrograph.

Authors: Petr Jelinek and Marian Karlický
Projects: None

Publication Status: IEEE Trans. Plasma Sci., 38(9), 2243
Last Modified: 2010-09-30 10:58
Go to main E-Print page  Determining Absorption, Emissivity Reduction, and Local Suppression Coefficients inside Sunspots  Search for Rapid Changes in the Visible-Light Corona during the 21~June 2001 Total Solar Eclipse  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University