E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Evidence for a current sheet forming in the wake of a Coronal Mass Ejection from multi-viewpoint coronagraph observations View all abstracts by submitter

Spiros Patsourakos   Submitted: 2010-10-05 03:20

Ray-like features observed by coronagraphs in the wake of Coronal Mass Ejections (CMEs) are sometimes interpreted as the white light counterparts of current sheets (CSs) produced by the eruption. The 3D geometry of these ray-like features is largely unknown and its knowledge should clarify their association to the CS and place constraints on CME physics and coronal conditions. With this study we test these important implications for the first time. An example of such a post-CME ray was observed by various coronagraphs, including these of the SECCHI instrument suite of the STEREO twin spacecraft and the Large Angle Spectrometric Coronagraph LASCO onboard the Solar and Heliospheric Observatory (SOHO). The ray was observed in the aftermath of a CME which occurred on 9 April 2008. The twin STEREO spacecraft were separated by about degrees on that day. This significant separation combined with a third ''eye'' view supplied by LASCO allow for a truly multi-viewpoint observation of the ray and of the CME. We applied 3D forward geometrical modeling to the CME and to the ray as simultaneously viewed by SECCHI-A and B and by SECCHI-A and LASCO, respectively. We found that the ray can be approximated by a rectangular slab, nearly aligned with the CME axis, and much smaller than the CME in both terms of thickness and depth (~ 0.05 and 0.15 Rsun respectively). We found that the ray and CME are significantly displaced from the associated post-CME flaring loops. The properties and location of the ray are fully consistent with the expectations of the standard CME theories for post-CME current sheets. Therefore, our multi-viewpoint observations supply strong evidence that the observed post-CME ray is indeed related to a post-CME current sheet.

Authors: S. Patsourakos, A. Vourlidas
Projects: STEREO

Publication Status: A&A, 2010, in press
Last Modified: 2010-10-05 08:00
Go to main E-Print page  Oscillatory processes in solar flares  Magnetic loops in the quiet Sun  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University