E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Stereoscopic Analysis of STEREO/SECCHI Data for CME Trajectory Determination View all abstracts by submitter

Paulett Liewer   Submitted: 2010-10-06 23:31

The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)coronagraphs on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft provide simultaneous views of the corona and coronal mass ejections from two view points. Here, we analyze simultaneous image pairs using the technique of tie-pointing and triangulation (T&T) to determine the three-dimensional trajectory of seven coronal mass ejections (CMEs). The bright leading edge of a CME seen in coronagraph images results from line-of-sight integration through the CME front; the two STEREO coronagraphs see different apparent leading edges, leading to a systematic error in its three-dimensional reconstruction. We analyze this systematic error using a simple geometric model of a CME front. We validate the technique and analysis by comparing T&T trajectory determinations for seven CMEs with trajectories determined by Thernisien, Vourlidas and Howard (2009) using a forward modeling technique not susceptible to this systematic effect. We find that, for the range of spacecraft separation studied (≤50?), T&T gives reliable trajectories (uncertainty < 10? in direction and < 15% velocity) for CME propagating within approximately "40" of perpendicular to Sun-Earth line. For CMEs close to the Sun-Earth or Sun-Spacecraft lines, T&T is subject to larger errors, especially in the velocity.

Authors: P. C. Liewer, J. R. Hall, R. A. Howard, E. M. De Jong, W. T. Thompson, A. Thernisien
Projects: STEREO

Publication Status: accepted
Last Modified: 2010-10-08 06:59
Go to main E-Print page  On Asymmetry of Magnetic Helicity in Emerging Active Regions: High Resolution Observations  The State of Self-Organized Criticality of the Sun During the Last Three Solar Cycles. II. Theoretical Model   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University