E-Print Archive

There are 4553 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
First SDO AIA Observations of a Global Coronal EUV ''Wave'': Multiple Components and ''Ripples'' View all abstracts by submitter

Wei Liu   Submitted: 2010-11-03 03:42

We present the first Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) observations of a global coronal EUV disturbance (so-called ''EIT wave'') revealed in unprecedented detail. The disturbance observed on 2010 April 8 exhibits two components: one diffuse pulse superimposed, on which are multiple sharp fronts that have slow and fast components. The disturbance originates in front of erupting coronal loops and some sharp fronts undergo accelerations, both effects implying that the disturbance is driven by a coronal mass ejection. The diffuse pulse, propagating at a uniform velocity of 204-238 km s-1 with very little angular dependence within its extent in the south, maintains its coherence and stable profile for ~30 minutes. Its arrival at increasing distances coincides with the onsets of loop expansions and the slow sharp front. The fast sharp front overtakes the slow front, producing multiple ''ripples'' and steepening the local pulse, and both fronts propagate independently afterward. This behavior resembles the nature of real waves. Unexpectedly, the amplitude and FWHM of the diffuse pulse decrease linearly with distance. A hybrid model, combining both wave and non-wave components, can explain many, but not all, of the observations. Discoveries of the two-component fronts and multiple ripples were made possible for the first time thanks to AIA's high cadences (<=20 s) and high signal-to-noise ratio.

Authors: Liu, Wei; Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; and Tarbell, Theodore D.
Projects: None

Publication Status: Published in ApJ Letters, 11/01/2010, Volume 723, Issue 1, pp. L53-L59
Last Modified: 2010-11-03 08:53
Go to main E-Print page  The Solar Source of a Magnetic Cloud Using a Velocity Difference Technique  Vector Magnetic Fields and Current Helicities in Coronal Holes and Quiet Regions  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point
Characterising fast-time variations in the hard X-ray time profiles of solar flares using Solar Orbiter's STIX
The quiet sun at mm wavelengths as seen by ALMA
Explosive Events in the Quiet Sun Near and Beyond the Solar Limb Observed with the Interface Region Imaging Spectrograph (IRIS)
Multi-stage reconnection powering a solar coronal jet
A Statistical Analysis of Magnetic Field Changes in the Photosphere during Solar Flares Using High-cadence Vector Magnetograms and Their Association with Flare Ribbons
Numerical Study on Excitation of Turbulence and Oscillation in Above-the-loop-top Region of a Solar Flare
Oscillatory reconnection as a plasma diagnostic in the solar corona
The independence of oscillatory reconnection periodicity from the initial pulse
Oscillatory Reconnection of a 2D X-point in a hot coronal plasma
Formation Of The Lyman Continuum During Solar Flares
MHD simulation of Solar Eruption from Active Region 11429 Driven by Photospheric Velocity Field
Unfolding Drift Effects for Cosmic Rays over the Period of the Sun's Magnetic Field Reversal
Problems in Observation and Identification of Torsional Waves in the Lower Solar Atmosphere
Solar Orbiter and SDO Observations, and Bifrost MHD Simulations of Small-scale Coronal Jets
Dominance of Bursty over Steady Heating of the 48 MK Coronal Plasma in a Solar Active Region: Quantification Using Maps of Minimum, Maximum, and Average Brightness
Solar flare hard X-rays from the anchor points of an eruptive filament
Plasmoids, Flows, and Jets During Magnetic Reconnection in a Failed Solar Eruption
Connecting Chromospheric Condensation Signatures to Reconnection-driven Heating Rates in an Observed Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University