E-Print Archive

There are 4525 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
On the linear coupling between fast and slow MHD waves due to line-tying effects View all abstracts by submitter

Jaume Terradas   Submitted: 2010-11-04 02:46

Oscillations in coronal loops are usually interpreted in terms of uncoupled magnetohydrodynamic (MHD) waves. Examples of these waves are standing transverse motions, interpreted as the kink MHD modes, and propagating slow modes, commonly reported at the loop footpoints. Here we study a simple system in which fast and slow MHD waves are coupled. The goal is to understand the fingerprints of the coupling when boundary conditions are imposed in the model. The reflection problem of a fast and slow MHD wave interacting with a rigid boundary, representing the line-tying effect of the photosphere, is analytically investigated. Both propagating and standing waves are analysed and the time-dependent problem of the excitation of these waves is considered. An obliquely incident fast MHD wave on the photosphere inevitably generates a slow mode. The frequency of the generated slow mode at the photosphere is exactly the same as the frequency of the incident fast MHD mode, but its wavelength is much smaller, assuming that the sound speed is smaller than the Alfvén speed. The main signatures of the generated slow wave are density fluctuations at the loop footpoints. We have derived a simple formula that relates the velocity amplitude of the transverse standing mode with the density enhancements at the footpoints due to the driven slow modes. Using these results it is shown that there are possible evidences in the observations of the coupling between these two modes.

Authors: Terradas, J., Andries, J., Verwichte, E.
Projects: None

Publication Status: A&A(submitted)
Last Modified: 2010-11-04 07:35
Go to main E-Print page  Damping of longitudinal magneto-acoustic oscillations in slowly varying coronal plasma  Driving Mechanism and Onset Condition of a Confined Eruption  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Geomagnetic storm forecasting from solar coronal holes
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University