E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Damping of longitudinal magneto-acoustic oscillations in slowly varying coronal plasma View all abstracts by submitter

KHALIL AL-GHAFRI   Submitted: 2010-11-05 06:03

We investigate the propagation of MHD waves in a homogenous, magnetized plasma in a weakly stratified atmosphere, representing hot coronal loops. In most of earlier studies a time-independent equilibrium is considered. Here we abandon this restriction and allow the equilibrium to develop as function of time. In particular, the background plasma is assumed to be cooling due to thermal conduction. The cooling is assumed to be on a time scale greater than the characteristic travel times of the perturbations. We investigate the influence of cooling of the background plasma on the properties of magneto-acoustic waves. The MHD equations are reduced to a 1-D system modelling magneto-acoustic modes progressing along a dynamically cooling coronal loop. A time dependent dispersion relation which describes the propagation of the magneto-acoustic waves is derived by using the WKB theory. An analytic solution for the time-dependent amplitude of waves is obtained and the method of characteristics is used to find an approximate analytical solution. Numerical calculations are applied to the analytically derived solutions to obtain further insight into the behavior of the MHD waves in a system with variable, time-dependent background. The results show that there is a strong damping of MHD waves that can be linked to the widely observed damping of hot coronal loop oscillations. The damping also appears to be independent of position along the loop. Studies of MHD wave behaviour in time-dependent background seem to be a fundamental and very important next step in developing MHD wave theory applicable to a wide range in solar physics.

Authors: Erdelyi, R.; Al-Ghafri, K.S.; Morton, R.J.
Projects:

Publication Status: submitted
Last Modified: 2010-11-12 08:18
Go to main E-Print page  Sigmoid-to-Flux-Rope Transition Leading to A Loop-Like Coronal Mass Ejection  On the linear coupling between fast and slow MHD waves due to line-tying effects  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University