E-Print Archive

There are 4080 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Role of Active Region Loop Geometry - II. Symmetry breaking in 3D Active Region: why are vertical kink oscillations observed so rarely? View all abstracts by submitter

Mag Selwa   Submitted: 2010-11-23 05:47

We present numerical results of simulations of kink oscillations of coronal loops in an idealized active region that is initialized as a potential dipole magnetic configuration with gravitationally stratified density. We consider loops, with density higher than the surrounding plasma, embedded into the dipolar AR. We study the excitation of kink oscillations of such loops by velocity pulses at different positions, of a given duration and amplitude. The position of the pulse varies in the parametric studies. For central (symmetric) loop within the AR, we find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically) below the loop. For pulses initiated further from such a symmetric loop a combination of vertical and horizontal oscillations is excited. The scenario changes significantly when we study an inclined loop (non-symmetric within a dipole field). In this case we do not see vertical kink oscillations of any significant amplitude being excited, while horizontal ones can be easily detected. These results indicate that the reason why vertical kink oscillations are observed so rarely is that their excitation requires a set of conditions to occur simultaneously: the exciting pulse must be located roughly below the loop apex and the loop itself must be located symmetrically within the group of loops. The new findings of the present study show the importance of not only the position of the pulse, but mainly of the location of the loop within the set of field lines having the same magnetic connectivity. We find that the slow propagating wave is excited in all the studied loops and its excitation does not depend neither on the geometry of the loop not the pulse. We discuss TRACE observations of coronal loops oscillations in view of our findings and find that our results can be used for identifying the polarization of the kink mode based on the location of the loop within the set of field lines of the same connectivity and the position of the flare.

Authors: M. Selwa, S. K. Solanki and L. Ofman
Projects:

Publication Status: ApJ accepted
Last Modified: 2010-11-25 08:36
Go to main E-Print page  Nonlinear effects in resonant layers in solart and space plasmas  Different Patterns of Chromospheric Evaporation in a Flaring Region Observed with Hinode/EIS  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Magnetic Helicity from Multipolar Regions on the Solar Surface
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Exoplanet predictions based on harmonic orbit resonances
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling
Interplanetary Type IV Bursts
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
Detection of spike-like structures near the front of type-II burstsA
High resolution observations with Artemis-JLS, (II) Type IV associated intermediate drift bursts
Oscillation of a small Hα surge in a solar polar coronal hole
Radio Observations of the January 20, 2005 X-Class Event
Fine Structure of Metric Type-IV Radio Bursts Observed with the ARTEMIS-IV Radio Spectrograph: Association with Flares and Coronal Mass Ejections
Spectral Analysis of the September 2017 Solar Energetic Particle Events
Solar Energetic Particle Events Observed by the PAMELA Mission

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University