E-Print Archive

There are 4053 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Magnetohydrodynamic kink waves in two-dimensional non-uniform prominence threads View all abstracts by submitter

Inigo Arregui   Submitted: 2010-11-30 01:48

We analyze the oscillatory properties of resonantly damped transverse kink oscillations in two-dimensional prominence threads. The fine structures are modeled as cylindrically symmetric magnetic flux tubes with a dense central part with prominence plasma properties and an evacuated part, both surrounded by coronal plasma. The equilibrium density is allowed to vary non-uniformly in both the transverse and the longitudinal directions. We examine the influence of longitudinal density structuring on periods, damping times, and damping rates for transverse kink modes computed by numerically solving the linear resistive magnetohydrodynamic (MHD) equations. The relevant parameters are the length of the dense part and the density in the evacuated part of the tube, two quantities that are difficult to directly estimate from observations. We find that both of them strongly influence the oscillatory periods and damping times, and to a lesser extend the damping ratios. This information is complemented with the analysis of the spatial distribution of perturbations and the energy flux at the resonances that allow us to explain the obtained damping times. Implications for prominence seismology are discussed in connection to the fact that observations may allow us to measure the length of the thread, while the supporting magnetic flux tube is not even observed and the density in the evacuated part of the tube is also difficult to estimate.

Authors: I. Arregui, R. Soler, J. L. Ballester, A. N. Wright
Projects: None

Publication Status: submitted
Last Modified: 2010-12-01 10:54
Go to main E-Print page  RHESSI Line and Continuum Observations of Super-hot Flare Plasma  Recent Advances in Understanding Particle Acceleration Processes in Solar Flares  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear waves in a non-equilibrium ionisation partially ionised plasma
How Many Twists Do Solar Coronal Jets Release?
Different Signatures of Chromospheric Evaporation in Two Solar Flares Observed with IRIS
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University