E-Print Archive

There are 4594 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Constraints on coronal turbulence models from source sizes of noise storms at 327 MHz View all abstracts by submitter

Prasad Subramanian   Submitted: 2010-12-17 05:19

We seek to reconcile observations of small source sizes in the solar corona at 327 MHz with predictions of scattering models that incorporate refractive index effects, inner scale effects and a spherically diverging wavefront. We use an empirical prescription for the turbulence amplitude CN2(R) based on VLBI observations by Spangler and coworkers of compact radio sources against the solar wind for heliocentric distances R approx 10-50 Rodot. We use the Coles & Harmon model for the inner scale li(R), that is presumed to arise from cyclotron damping. In view of the prevalent uncertainty in the power law index that characterizes solar wind turbulence at various heliocentric distances, we retain this index as a free parameter. We find that the inclusion of spherical divergence effects suppresses the predicted source size substantially. We also find that inner scale effects significantly reduce the predicted source size. An important general finding for solar sources is that the calculations substantially underpredict the observed source size. Three possible, non-exclusive, interpretations of this general result are proposed. First and simplest, future observations with better angular resolution will detect much smaller sources. Consistent with this, previous observations of small sources in the corona at metric wavelengths are limited by the instrument resolution. Second, the spatially-varying level of turbulence CN2(R) is much larger in the inner corona than predicted by straightforward extrapolation Sunwards of the empirical prescription, which was based on observations between 10-50 Rodot. Either the functional form or the constant of proportionality could be different. Third, perhaps the inner scale is smaller than the model, leading to increased scattering.

Authors: Prasad Subramanian (IISER Pune, India), Iver Cairns (U. Sydney, Australia)
Projects: None

Publication Status: Accepted for publication in the Journal of Geophysical Research (Space Physics)
Last Modified: 2010-12-17 09:41
Go to main E-Print page  Types of Microwave Quasi-Periodic Pulsations in Single Flaring Loops  Relationship between Hard and Soft X-ray Emission Components of a Solar Flare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Repeated Type III Burst Groups Associated with a B-Class Flare and a Narrow-Width CME
Separating the effects of earthside and far side solar events. A case study.
Deciphering The Slow-rise Precursor of a Major Coronal Mass Ejection
Three-dimensional Turbulent Reconnection within Solar Flare Current Sheet
Sequential Remote Brightenings and Co-spatial Fast Downflows during Two Successive Flares
A Model for Confined Solar Eruptions Including External Reconnection
The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe
Comprehensive radiative MHD simulations of eruptive flares above collisional polarity inversion lines
An Anisotropic Density Turbulence Model from the Sun to 1 au Derived From Radio Observations
Comparison of damping models for kink oscillations of coronal loops
On the three-dimensional relation between the coronal dimming, erupting filament and CME. Case study of the 28 October 2021 X1.0 event
Polarisation of decayless kink oscillations of solar coronal loops
CME Propagation Through the Heliosphere: Status and Future of Observations and Model Development
30-min Decayless Kink Oscillations in a Very Long Bundle of Solar Coronal Plasma Loops
The Role of High-Frequency Transverse Oscillations in Coronal Heating
ARTop: an open-source tool for measuring Active Region Topology at the solar photosphere
Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE
New cases of super-flares on slowly rotating solar-type stars and large amplitude super-flares in G- and M-type main-sequence stars
Constraints on the variable nature of the slow solar wind with the Wide-Field Imager on board the Parker Solar Probe
Prediction of short stellar activity cycles using derived and established empirical relations between activity and rotation periods

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University