E-Print Archive

There are 4036 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO View all abstracts by submitter

Karel Schrijver   Submitted: 2011-01-18 18:08

The combination of SDO and STEREO observations enable us to view much of the solar surface and atmosphere simultaneously and continuously. These near-global observations often show near-synchronous long-distance interactions between magnetic domains that exhibit flares, eruptions, and frequent minor forms of activity. Here, we analyze a series of flares, filament eruptions, coronal mass ejections, and related events which occurred on 2010/08/01-02. These events extend over a full hemisphere of the Sun, only two-thirds of which is visible from the Earth's perspective. The combination of coronal observations and global field modeling reveals the many connections between these events by magnetic field lines, particularly those at topological divides. We find that all events of substantial coronal activity, including those where flares and eruptions initiate, are connected by a system of separatrices, separators, and quasi-separatrix layers, with little activity within the deep interiors of domains of connectivity. We conclude that for this sequence of events the evolution of field on the hemisphere invisible from Earth's perspective is essential to the evolution, and possibly even to the initiation, of the flares and eruptions over an area that spans at least 180 degrees in longitude. Our findings emphasize that the search for the factors that play a role in the initiation and evolution of eruptive and explosive phenomena, sought after for improved space-weather forecasting, requires knowledge of much, if not all, of the solar surface field.

Authors: C.J. Schrijver and A.M. Title
Projects: SDO-AIA,SDO-HMI,STEREO

Publication Status: Journal of Geophysical Research (Space Physics), in press
Last Modified: 2011-01-19 08:46
Go to main E-Print page  Magnetic Kelvin-Helmholtz Instability at the Sun  Observation of Kink Instability as Driver of Recurrent Flares in AR 10960  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University