E-Print Archive

There are 3812 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Initiation and early development of the 2008 April 26 Coronal Mass Ejection View all abstracts by submitter

Pascal Demoulin   Submitted: 2011-02-07 06:37

We present a detailed study of a coronal mass ejection (CME) with high temporal cadence observations in radio and extreme ultraviolet (EUV). The radio observations combine imaging of the low corona with radio spectra in the outer corona and interplanetary space. The EUV observations combine the three points of view of the STEREO and SOHO spacecraft. The beginning of the CME initiation phase is characterized by emissions that are signatures of the reconnection of the outer part of the erupting configuration with surrounding magnetic fields. Later on, a main source of emission is located in the core of the active region. It is an indirect signature of the magnetic reconnection occurring behind the erupting flux rope. Energetic particles are also injected in the flux rope and the corresponding radio sources are detected. Other radio sources, located in front of the EUV bright front, are tracing the interaction of the flux rope with the surrounding fields. Hence, the observed radio sources enable us to detect the main physical steps of the CME launch. We find that imaging radio emissions in the metric range permits to trace the extension and orientation of the flux rope which is later detected in the interplanetary space. Moreover, combining the radio images at various frequency with fast EUV imaging permits to characterize in space and time the processes involved in the CME launch.

Authors: J. Huang, P. Demoulin, M. Pick, F. Auchere, Y.H. Yan, A. Bouteille
Projects: STEREO

Publication Status: in press, ApJ
Last Modified: 2011-02-07 12:31
Go to main E-Print page  Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues   Density Enhancements and Voids following Patchy Reconnection  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Evolution of Photospheric Flow and Magnetic Fields Associated with The 2015 June 22 M6.5 Flare
Spatially inhomogeneous acceleration of electrons in solar flares
Probing Twisted Magnetic Field Using Microwave Observations in an M Class Solar Flare on 11 February, 2014
The origin, early evolution and predictability of solar eruptions
Polar Field Correction for HMI Line-of-Sight Synoptic Data
Relationship between Intensity of White-Light Flares and Proton Flux of Solar Energetic Particles
Spectroscopic Observations of a Current Sheet in a Solar Flare
IRIS Observations of Spicules and Structures Near the Solar Limb
Strong Transverse Photosphere Magnetic Fields and Twist in Light Bridge Dividing Delta Sunspot of Active Region 12673
Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare
Spectroscopic diagnostics of the non-Maxwellian κ-distributions using SDO/EVE observations of the 2012 March 7 X-class flare
Transient rotation of photospheric vector magnetic fields associated with a solar flare
Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare
Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares
A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures
Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model
Solar energetic particles and radio burst emission
A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope
Two-step solar filament eruptions
Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University