E-Print Archive

There are 3897 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Initiation and early development of the 2008 April 26 Coronal Mass Ejection View all abstracts by submitter

Pascal Demoulin   Submitted: 2011-02-07 06:37

We present a detailed study of a coronal mass ejection (CME) with high temporal cadence observations in radio and extreme ultraviolet (EUV). The radio observations combine imaging of the low corona with radio spectra in the outer corona and interplanetary space. The EUV observations combine the three points of view of the STEREO and SOHO spacecraft. The beginning of the CME initiation phase is characterized by emissions that are signatures of the reconnection of the outer part of the erupting configuration with surrounding magnetic fields. Later on, a main source of emission is located in the core of the active region. It is an indirect signature of the magnetic reconnection occurring behind the erupting flux rope. Energetic particles are also injected in the flux rope and the corresponding radio sources are detected. Other radio sources, located in front of the EUV bright front, are tracing the interaction of the flux rope with the surrounding fields. Hence, the observed radio sources enable us to detect the main physical steps of the CME launch. We find that imaging radio emissions in the metric range permits to trace the extension and orientation of the flux rope which is later detected in the interplanetary space. Moreover, combining the radio images at various frequency with fast EUV imaging permits to characterize in space and time the processes involved in the CME launch.

Authors: J. Huang, P. Demoulin, M. Pick, F. Auchere, Y.H. Yan, A. Bouteille
Projects: STEREO

Publication Status: in press, ApJ
Last Modified: 2011-02-07 12:31
Go to main E-Print page  Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues   Density Enhancements and Voids following Patchy Reconnection  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Computation of Relative Magnetic Helicity in Spherical Coordinates
Some characteristics of the GLE on 10 September 2017
Quasi-periodic Pulsations in a Solar Microflare
Homologous large-amplitude Nonlinear fast-mode Magnetosonic Waves Driven by Recurrent Coronal Jets
EUV Waves Driven by Sudden Expansion of Transequatorial Loops Caused by Solar Coronal Jets
Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament
Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO
LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts
Critical magnetic field strengths for solar coronal plumes in quiet regions and coronal holes?
Does Nearby Open Flux Affect the Eruptivity of Solar Active Regions?
Cyclic Changes of the Sun's Seismic Radius
Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of September 6, 2017
Solar Cycle Variations of Rotation and Asphericity in the Near-Surface Shear Layer
Solar coronal loop dynamics near the null point above active region NOAA 2666
Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations
The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave
Indirect solar wind measurements using archival cometary tail observations
Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun
Always a Farm Boy
Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University