E-Print Archive

There are 3897 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Investigating the observational signatures of magnetic cloud substructure View all abstracts by submitter

Pascal Demoulin   Submitted: 2011-02-07 06:51

Magnetic clouds (MCs) represent a subset of interplanetary coronal mass ejections (ICMEs) that exhibit a magnetic flux rope structure. They are primarily identified by smooth, large‐scale rotations of the magnetic field. However, both small‐ and large‐scale fluctuations of the magnetic field are observed within some magnetic clouds. We analyzed the magnetic field in the frames of the flux ropes, approximated using a minimum variance analysis (MVA), and have identified a small number of MCs within which multiple reversals of the gradient of the azimuthal magnetic field are observed. We herein use the term 'substructure' to refer to regions that exhibit this signature. We examine, in detail, one such MC observed on 13 April 2006 by the ACE and WIND spacecraft and show that substructure has distinct signatures in both the magnetic field and plasma observations. We identify two thin current sheets within the substructure and find that they bound the region in which the observations deviate most significantly from those typically expected in MCs. The majority of these clouds are followed by fast solar wind streams, and a comparison of the properties of this magnetic cloud with five similar events reveals that they have lower nondimensional expansion rates than nonovertaken magnetic clouds. We discuss and evaluate several possible explanations for this type of substructure, including the presence of multiple flux ropes and warping of the MC structure, but we conclude that none of these scenarios is able to fully explain all of the aspects of the substructure observations.

Authors: K. Steed, C. J. Owen, P. Demoulin, and S. Dasso
Projects: None

Publication Status: JGR 116, A01106
Last Modified: 2011-02-07 12:31
Go to main E-Print page  Multilevel Analysis of Oscillation Motions in Active Regions of the Sun  Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Computation of Relative Magnetic Helicity in Spherical Coordinates
Some characteristics of the GLE on 10 September 2017
Quasi-periodic Pulsations in a Solar Microflare
Homologous large-amplitude Nonlinear fast-mode Magnetosonic Waves Driven by Recurrent Coronal Jets
EUV Waves Driven by Sudden Expansion of Transequatorial Loops Caused by Solar Coronal Jets
Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament
Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO
LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts
Critical magnetic field strengths for solar coronal plumes in quiet regions and coronal holes?
Does Nearby Open Flux Affect the Eruptivity of Solar Active Regions?
Cyclic Changes of the Sun's Seismic Radius
Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of September 6, 2017
Solar Cycle Variations of Rotation and Asphericity in the Near-Surface Shear Layer
Solar coronal loop dynamics near the null point above active region NOAA 2666
Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations
The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave
Indirect solar wind measurements using archival cometary tail observations
Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun
Always a Farm Boy
Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University