E-Print Archive

There are 3946 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Investigating the observational signatures of magnetic cloud substructure View all abstracts by submitter

Pascal Demoulin   Submitted: 2011-02-07 06:51

Magnetic clouds (MCs) represent a subset of interplanetary coronal mass ejections (ICMEs) that exhibit a magnetic flux rope structure. They are primarily identified by smooth, large‐scale rotations of the magnetic field. However, both small‐ and large‐scale fluctuations of the magnetic field are observed within some magnetic clouds. We analyzed the magnetic field in the frames of the flux ropes, approximated using a minimum variance analysis (MVA), and have identified a small number of MCs within which multiple reversals of the gradient of the azimuthal magnetic field are observed. We herein use the term 'substructure' to refer to regions that exhibit this signature. We examine, in detail, one such MC observed on 13 April 2006 by the ACE and WIND spacecraft and show that substructure has distinct signatures in both the magnetic field and plasma observations. We identify two thin current sheets within the substructure and find that they bound the region in which the observations deviate most significantly from those typically expected in MCs. The majority of these clouds are followed by fast solar wind streams, and a comparison of the properties of this magnetic cloud with five similar events reveals that they have lower nondimensional expansion rates than nonovertaken magnetic clouds. We discuss and evaluate several possible explanations for this type of substructure, including the presence of multiple flux ropes and warping of the MC structure, but we conclude that none of these scenarios is able to fully explain all of the aspects of the substructure observations.

Authors: K. Steed, C. J. Owen, P. Demoulin, and S. Dasso
Projects: None

Publication Status: JGR 116, A01106
Last Modified: 2011-02-07 12:31
Go to main E-Print page  Multilevel Analysis of Oscillation Motions in Active Regions of the Sun  Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation
A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares
Observations of Turbulent Magnetic Reconnection Within a Solar Current Sheet
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts
Densities Probed by Coronal Type III Radio Burst Imaging

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University