E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
AIA Multithermal Loop Analysis: First Results View all abstracts by submitter

Joan Schmelz   Submitted: 2011-02-14 09:44

The Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory has state-of-the-art spatial resolution and shows the most detailed images of coronal loops ever observed. The series of coronal filters peak at different temperatures, which span the range of active regions. These features represent a significant improvement over earlier coronal imagers and make AIA ideal for multi-thermal analysis. Here we targeted a 171Å coronal loop in AR 11092 observed by AIA on 2010 August 3. Isothermal analysis using the 171-to-193 ratio gave a temperature of Log T ∼ 6.1, similar to the results of EIT and TRACE. Differential Emission Measure analysis, however, showed that the plasma was multithermal, not isothermal, with the bulk of the emission measure at Log T > 6.1. The result from the isothermal analysis, which is the average of the true plasma distribution weighted by the instrument response functions, appears to be deceptively low. These results have potentially serious implications: EIT and TRACE results, which use the same isothermal method, show substantially smaller temperature gradients than predicted by standard models for loops in hydrodynamic equilibrium and have been used as strong evidence in support of footpoint heating models. These implications may have to be re-examined in the wake of new results from AIA.

Authors: Schmelz, Kimble, Jenkins, Worley, Anderson, Pathak, Saar
Projects: SDO-AIA

Publication Status: ApJ Letters, 725, L34, 2010
Last Modified: 2011-02-14 11:04
Go to main E-Print page  Isothermal and Multithermal Analysis of Coronal Loops Observed with AIA  The Thermal Instability of Solar Prominence Threads  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University