E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Short-term evolution of coronal hole boundaries View all abstracts by submitter

Larisza Diana Krista   Submitted: 2011-03-15 07:39

The interaction of open and closed field lines at coronal holeboundaries is widely accepted to be due to interchange magneticreconnection. To date, it is unclear how the boundaries vary on shorttimescales and at what velocity this occurs. Here, we describe anautomated boundary tracking method used to determine coronal holeboundary displacements on short timescales. The boundary displacementswere found to be isotropic and to have typical expansion/contractionspeeds of ≤2 km s-1, which indicate magnetic reconnectionrates of ≤3 x 10. The observed displacements were usedin conjunction with the interchange reconnection model to derivetypical diffusion coefficients of ≤3 x 1013cm2 s-1.These results are consistent with an interchange reconnection processin the low corona driven by the random granular motions of open andclosed fields in the photosphere.

Authors: Larisza D. Krista, Peter T. Gallagher, D. Shaun Bloomfield
Projects: SoHO-EIT,SoHO-MDI

Publication Status: ApJL (Accepted)
Last Modified: 2011-03-15 14:49
Go to main E-Print page  The effects of electron beam induced electric field on the generation of Langmuir turbulence in flaring atmospheres  CORONAL SEISMOLOGY USING EIT WAVES: ESTIMATION OF THE CORONAL MAGNETIC FIELD STRENGTH IN THE QUIET SUN  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University