E-Print Archive

There are 3758 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
TomograPy: A Fast, Instrument-Independent, Solar Tomography Software View all abstracts by submitter

Nicolas Barbey   Submitted: 2011-03-31 03:20

Solar tomography has progressed rapidly in recent years thanks to thedevelopment of robust algorithms and the availability of more powerfulcomputers. It can today provide crucial insights in solving issuesrelated to the line-of-sight integration present in the data of solarimagers and coronagraphs. However, there remain challenges such as theincrease of the available volume of data, the handling of the temporalevolution of the observed structures, and the heterogeneity of thedata in multi-spacecraft studies. We present a generic softwarepackage that can perform fast tomographic inversions that scaleslinearly with the number of measurements, linearly with the length ofthe reconstruction cube (and not the number of voxels) and linearlywith the number of cores and can use data from different sources andwith a variety of physical models: TomograPy, an open-source software freelyavailable on the Python Package Index. For performance, TomograPy usesa parallelized-projection algorithm. It relies on the World CoordinateSystem standard to manage various data sources. A variety of inversionalgorithms are provided to perform the tomographic-map estimation. Atest suite is provided along with the code to ensure software quality.Since it makes use of the Siddon algorithm it is restricted torectangular parallelepiped voxels but the spherical geometry of thecorona can be handled through proper use of priors. We describe themain features of the code and show three practical examples ofmulti-spacecraft tomographic inversions using STEREO/EUVI andSTEREO/COR1 data. Static and smoothly varying temporal evolutionmodels are presented.

Authors: Nicolas Barbey, Chloé Guennou, Frédéric Auchère
Projects: None

Publication Status: accepted in Solar Physics
Last Modified: 2011-03-31 08:32
Go to main E-Print page  Period persistence of long period oscillations in sunspots  Budget of energetic electrons during solar flares in the framework of magnetic reconnection  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare
Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops
A Magnetic Bald-Patch Flare in Solar Active Region 11117
Reply to comment by Usoskin (2017) on the paper
Non-thermal hydrogen Balmer and Paschen emission in solar flares generated by electron beams
Pulsations in the Earth's Lower Ionosphere Synchronized with Solar Flare Emission
Oscillations Excited by Plasmoids Formed During Magnetic Reconnection in a Vertical Gravitationally Stratified Current Sheet
Doppler shift oscillations from a hot line observed by IRIS
Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains
Detection of 3-Minute Oscillations in Full-disk Lya Emission During A Solar Flare
A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations
Comparison of Helioseismic Far-side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity
Observations of a Radio-quiet Solar Preflare
Energy release in the solar atmosphere from a stream of infalling prominence debris
Estimation of a Coronal Mass Ejection Magnetic Field Strength using Radio Observations of Gyrosynchrotron Radiation
QUASI-PERIODIC OSCILLATIONS IN FLARES AND CORONAL MASS EJECTIONS ASSOCIATED WITH MAGNETIC RECONNECTION
The 17 February 2013 sunquake in the context of the active region's magnetic field configuration
Optimal Energy Growth in Current Sheets
Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles
The Abundance of Helium in the Source Plasma of Solar Energetic Particles

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University