E-Print Archive

There are 4100 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
TomograPy: A Fast, Instrument-Independent, Solar Tomography Software View all abstracts by submitter

Nicolas Barbey   Submitted: 2011-03-31 03:20

Solar tomography has progressed rapidly in recent years thanks to thedevelopment of robust algorithms and the availability of more powerfulcomputers. It can today provide crucial insights in solving issuesrelated to the line-of-sight integration present in the data of solarimagers and coronagraphs. However, there remain challenges such as theincrease of the available volume of data, the handling of the temporalevolution of the observed structures, and the heterogeneity of thedata in multi-spacecraft studies. We present a generic softwarepackage that can perform fast tomographic inversions that scaleslinearly with the number of measurements, linearly with the length ofthe reconstruction cube (and not the number of voxels) and linearlywith the number of cores and can use data from different sources andwith a variety of physical models: TomograPy, an open-source software freelyavailable on the Python Package Index. For performance, TomograPy usesa parallelized-projection algorithm. It relies on the World CoordinateSystem standard to manage various data sources. A variety of inversionalgorithms are provided to perform the tomographic-map estimation. Atest suite is provided along with the code to ensure software quality.Since it makes use of the Siddon algorithm it is restricted torectangular parallelepiped voxels but the spherical geometry of thecorona can be handled through proper use of priors. We describe themain features of the code and show three practical examples ofmulti-spacecraft tomographic inversions using STEREO/EUVI andSTEREO/COR1 data. Static and smoothly varying temporal evolutionmodels are presented.

Authors: Nicolas Barbey, Chloé Guennou, Frédéric Auchère
Projects: None

Publication Status: accepted in Solar Physics
Last Modified: 2011-03-31 08:32
Go to main E-Print page  Period persistence of long period oscillations in sunspots  Budget of energetic electrons during solar flares in the framework of magnetic reconnection  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University