E-Print Archive

There are 3783 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
TomograPy: A Fast, Instrument-Independent, Solar Tomography Software View all abstracts by submitter

Nicolas Barbey   Submitted: 2011-03-31 03:20

Solar tomography has progressed rapidly in recent years thanks to thedevelopment of robust algorithms and the availability of more powerfulcomputers. It can today provide crucial insights in solving issuesrelated to the line-of-sight integration present in the data of solarimagers and coronagraphs. However, there remain challenges such as theincrease of the available volume of data, the handling of the temporalevolution of the observed structures, and the heterogeneity of thedata in multi-spacecraft studies. We present a generic softwarepackage that can perform fast tomographic inversions that scaleslinearly with the number of measurements, linearly with the length ofthe reconstruction cube (and not the number of voxels) and linearlywith the number of cores and can use data from different sources andwith a variety of physical models: TomograPy, an open-source software freelyavailable on the Python Package Index. For performance, TomograPy usesa parallelized-projection algorithm. It relies on the World CoordinateSystem standard to manage various data sources. A variety of inversionalgorithms are provided to perform the tomographic-map estimation. Atest suite is provided along with the code to ensure software quality.Since it makes use of the Siddon algorithm it is restricted torectangular parallelepiped voxels but the spherical geometry of thecorona can be handled through proper use of priors. We describe themain features of the code and show three practical examples ofmulti-spacecraft tomographic inversions using STEREO/EUVI andSTEREO/COR1 data. Static and smoothly varying temporal evolutionmodels are presented.

Authors: Nicolas Barbey, Chloé Guennou, Frédéric Auchère
Projects: None

Publication Status: accepted in Solar Physics
Last Modified: 2011-03-31 08:32
Go to main E-Print page  Period persistence of long period oscillations in sunspots  Budget of energetic electrons during solar flares in the framework of magnetic reconnection  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Determination of Linear Force-Free Magnetic Field Constant Alpha Using Deep Learning
Heating and cooling of coronal loops with turbulent suppression of parallel heat conduction
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms
Fluting Modes in Transversely Nonuniform Solar Flux Tubes
Super-Flaring Active Region 12673 Has One of the Fastest Magnetic Flux Emergence Ever Observed
First NuSTAR Limits on Quiet Sun Hard X-Ray Transient Events
Solar-wind predictions for the Parker Solar Probe orbit
Simulating coronal loop implosion and compressible wave modes in a flare hit active region
Development of Solar Flares and Features of the Fine Structure of Solar Radio Emission
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
Imaging Spectroscopy of Solar Radio Burst Fine Structures
On a small-scale EUV wave: the driving mechanism and the associated oscillating filament
Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer
On a solar blowout jet: driven mechanism and the formation of cool and hot components
Understanding the Role of Mass-Unloading in Filament Eruptions
Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments
The direct relation between the duration of magnetic reconnection and the evolution of GOES light curves in solar flares
Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis
Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars
Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University