E-Print Archive

There are 3947 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
TomograPy: A Fast, Instrument-Independent, Solar Tomography Software View all abstracts by submitter

Nicolas Barbey   Submitted: 2011-03-31 03:20

Solar tomography has progressed rapidly in recent years thanks to thedevelopment of robust algorithms and the availability of more powerfulcomputers. It can today provide crucial insights in solving issuesrelated to the line-of-sight integration present in the data of solarimagers and coronagraphs. However, there remain challenges such as theincrease of the available volume of data, the handling of the temporalevolution of the observed structures, and the heterogeneity of thedata in multi-spacecraft studies. We present a generic softwarepackage that can perform fast tomographic inversions that scaleslinearly with the number of measurements, linearly with the length ofthe reconstruction cube (and not the number of voxels) and linearlywith the number of cores and can use data from different sources andwith a variety of physical models: TomograPy, an open-source software freelyavailable on the Python Package Index. For performance, TomograPy usesa parallelized-projection algorithm. It relies on the World CoordinateSystem standard to manage various data sources. A variety of inversionalgorithms are provided to perform the tomographic-map estimation. Atest suite is provided along with the code to ensure software quality.Since it makes use of the Siddon algorithm it is restricted torectangular parallelepiped voxels but the spherical geometry of thecorona can be handled through proper use of priors. We describe themain features of the code and show three practical examples ofmulti-spacecraft tomographic inversions using STEREO/EUVI andSTEREO/COR1 data. Static and smoothly varying temporal evolutionmodels are presented.

Authors: Nicolas Barbey, Chloé Guennou, Frédéric Auchère
Projects: None

Publication Status: accepted in Solar Physics
Last Modified: 2011-03-31 08:32
Go to main E-Print page  Period persistence of long period oscillations in sunspots  Budget of energetic electrons during solar flares in the framework of magnetic reconnection  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation
A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares
Observations of Turbulent Magnetic Reconnection Within a Solar Current Sheet
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University