E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Direct Imaging by SDO/AIA of Quasi-periodic Propagating Fast Mode Magnetosonic Waves Propagating of ~2000 km s-1 in the Low Solar Corona View all abstracts by submitter

Wei Liu   Submitted: 2011-06-15 12:22

Quasi-periodic, propagating fast mode magnetosonic waves in the corona weredifficult to observe in the past due to relatively low instrument cadences. Wereport here evidence of such waves directly imaged in EUV by the new SDO AIAinstrument. In the 2010 August 1 C3.2 flare/CME event, we find arc-shaped wavetrains of 1-5% intensity variations (lifetime ~200 s) that emanate near theflare kernel and propagate outward up to ~400 Mm along a funnel of coronalloops. Sinusoidal fits to a typical wave train indicate a phase velocity of2200 ± 130 km s-1. Similar waves propagating in opposite directions areobserved in closed loops between two flare ribbons. In the k-omega diagramof the Fourier wave power, we find a bright ridge that represents thedispersion relation and can be well fitted with a straight line passing throughthe origin. This k-omega ridge shows a broad frequency distribution withindicative power at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz(period 181 s) temporally coincides with quasi-periodic pulsations of theflare, suggesting a common origin. The instantaneous wave energy flux of(0.1-2.6) imes 107 ergs/cm2/s estimated at the coronal base is comparableto the steady-state heating requirement of active region loops.

Authors: Wei Liu, Alan M. Title, Junwei Zhao, Leon Ofman, Carolus J. Schrijver, Markus J. Aschwanden, Bart De Pontieu, and Theodore D. Tarbell
Projects: SDO-AIA

Publication Status: Accepted by ApJ Letters (AAS/SPD Press Release, Las Cruces, June 15, http://www.lmsal.com/press/apjl2011_magnetosonic)
Last Modified: 2011-06-18 06:54
Go to main E-Print page  Solar Dynamics Observatory discovers thin high temperature strands in coronal active regions  Major electron events and coronal magnetic configurations of the related solar active regions   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University