E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Direct Imaging by SDO/AIA of Quasi-periodic Propagating Fast Mode Magnetosonic Waves Propagating of ~2000 km s-1 in the Low Solar Corona View all abstracts by submitter

Wei Liu   Submitted: 2011-06-15 12:22

Quasi-periodic, propagating fast mode magnetosonic waves in the corona weredifficult to observe in the past due to relatively low instrument cadences. Wereport here evidence of such waves directly imaged in EUV by the new SDO AIAinstrument. In the 2010 August 1 C3.2 flare/CME event, we find arc-shaped wavetrains of 1-5% intensity variations (lifetime ~200 s) that emanate near theflare kernel and propagate outward up to ~400 Mm along a funnel of coronalloops. Sinusoidal fits to a typical wave train indicate a phase velocity of2200 ± 130 km s-1. Similar waves propagating in opposite directions areobserved in closed loops between two flare ribbons. In the k-omega diagramof the Fourier wave power, we find a bright ridge that represents thedispersion relation and can be well fitted with a straight line passing throughthe origin. This k-omega ridge shows a broad frequency distribution withindicative power at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz(period 181 s) temporally coincides with quasi-periodic pulsations of theflare, suggesting a common origin. The instantaneous wave energy flux of(0.1-2.6) imes 107 ergs/cm2/s estimated at the coronal base is comparableto the steady-state heating requirement of active region loops.

Authors: Wei Liu, Alan M. Title, Junwei Zhao, Leon Ofman, Carolus J. Schrijver, Markus J. Aschwanden, Bart De Pontieu, and Theodore D. Tarbell
Projects: SDO-AIA

Publication Status: Accepted by ApJ Letters (AAS/SPD Press Release, Las Cruces, June 15, http://www.lmsal.com/press/apjl2011_magnetosonic)
Last Modified: 2011-06-18 06:54
Go to main E-Print page  Solar Dynamics Observatory discovers thin high temperature strands in coronal active regions  Major electron events and coronal magnetic configurations of the related solar active regions   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University