E-Print Archive

There are 4021 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Mass Loss, Destruction and Detection of Sun-grazing & -impacting Cometary Nuclei View all abstracts by submitter

John Brown   Submitted: 2011-07-07 16:04

Context. Incoming sun-grazing comets almost never re-emerge, but nofinal destruction event has ever been observed, nor sunimpactordestruction theory developed.
Aims. We seek analytic models of comet nucleus destruction at the sun,to estimate impact signature dependence on incident massMo and perihelion q.Methods. We approximate evaporative mass loss rates by heatingrate/latent heat of sublimation and obtain analytic estimates forM(r) versus q and distance r for evaporation processes alone -insolation sublimation and, for the first time, impact ablation.Insolationdominates above 1.01Rsun (density n below 2.5E11/cc). Below 1.01Rsun,ablation overwhelms insolation, since n(r) rises exponentially.Nuclei with Mo(1-q/1.01Rsun)**1.5 below 1E10 g are totally ablatedbefore ram pressure matters. This shallow entry angleregime applies to the great majority of sun-grazers but any highmass/steep entry nuclei penetrate to n above 2.5E14/cc where soaringram pressure drives catastrophic explosion like large masscomet-planet impacts.
Results. Close sun-grazers fall sharply into three (Mo,q) regimes:insolation-, ablation-, and explosion-dominated. Our analytic insolationregime results are similar to previous numerical models. Nuclei of Moexceeding 1E11 g either survive insolation to r=1.01Rsunand re-emerge or, for q below 1.01Rsun, enter the atmosphericcollisional regime where behavior depends on Mo and entry angle phi.For the shallow angle impacts of most sun-grazers, all but theheaviest nuclei ablate totally before exploding, though the hot wakeitself explodes. For steep entry, all masses explode before totalablation, creating an airburst and fireball. These explosions resemblesolar flares and should be observable.
Conclusions. Analytic descriptions indicate the (Mo,q) regimes wheresublimation, ablation and explosion dominate destruction ofsun-grazer/-impactor comets. Extended insolative destruction near thesun is hard to observe. Nuclei with q below 1.01Rsun and Moabove 1E11 g are destroyed catastrophically by ablation or explosion(depending on Mo(cos phi)**3) in the chromosphere, producingfireballs with properties comparable to solar flares but with cometaryabundance spectra. Only nuclei more massive than 1E17 g canever reach the photosphere before exploding.

NOTE ADDED 7/7/11- Shortly after thispaper was resubmitted (21/6/11) to A&A, actualobservations of destruction of a sun-grazer comet today were reportedby Shryver - see www.lmsal.com/ schryver/

Authors: J.C. Brown, H.E. Potts, L.J. Porter & G. le Chat
Projects: None

Publication Status: A & A Submitted
Last Modified: 2011-07-07 16:05
Go to main E-Print page  Multi-Wavelength Observations of a Flux Rope Failed in the Eruption and Associated M-Class Flare from NOAA AR 11045  Particle acceleration by circularly and elliptically polarised dispersive Alfven waves in a transversely inhomogeneous plasma in the inertial and kinetic regimes  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University