E-Print Archive

There are 3989 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Mass Loss, Destruction and Detection of Sun-grazing & -impacting Cometary Nuclei View all abstracts by submitter

John Brown   Submitted: 2011-07-07 16:04

Context. Incoming sun-grazing comets almost never re-emerge, but nofinal destruction event has ever been observed, nor sunimpactordestruction theory developed.
Aims. We seek analytic models of comet nucleus destruction at the sun,to estimate impact signature dependence on incident massMo and perihelion q.Methods. We approximate evaporative mass loss rates by heatingrate/latent heat of sublimation and obtain analytic estimates forM(r) versus q and distance r for evaporation processes alone -insolation sublimation and, for the first time, impact ablation.Insolationdominates above 1.01Rsun (density n below 2.5E11/cc). Below 1.01Rsun,ablation overwhelms insolation, since n(r) rises exponentially.Nuclei with Mo(1-q/1.01Rsun)**1.5 below 1E10 g are totally ablatedbefore ram pressure matters. This shallow entry angleregime applies to the great majority of sun-grazers but any highmass/steep entry nuclei penetrate to n above 2.5E14/cc where soaringram pressure drives catastrophic explosion like large masscomet-planet impacts.
Results. Close sun-grazers fall sharply into three (Mo,q) regimes:insolation-, ablation-, and explosion-dominated. Our analytic insolationregime results are similar to previous numerical models. Nuclei of Moexceeding 1E11 g either survive insolation to r=1.01Rsunand re-emerge or, for q below 1.01Rsun, enter the atmosphericcollisional regime where behavior depends on Mo and entry angle phi.For the shallow angle impacts of most sun-grazers, all but theheaviest nuclei ablate totally before exploding, though the hot wakeitself explodes. For steep entry, all masses explode before totalablation, creating an airburst and fireball. These explosions resemblesolar flares and should be observable.
Conclusions. Analytic descriptions indicate the (Mo,q) regimes wheresublimation, ablation and explosion dominate destruction ofsun-grazer/-impactor comets. Extended insolative destruction near thesun is hard to observe. Nuclei with q below 1.01Rsun and Moabove 1E11 g are destroyed catastrophically by ablation or explosion(depending on Mo(cos phi)**3) in the chromosphere, producingfireballs with properties comparable to solar flares but with cometaryabundance spectra. Only nuclei more massive than 1E17 g canever reach the photosphere before exploding.

NOTE ADDED 7/7/11- Shortly after thispaper was resubmitted (21/6/11) to A&A, actualobservations of destruction of a sun-grazer comet today were reportedby Shryver - see www.lmsal.com/ schryver/

Authors: J.C. Brown, H.E. Potts, L.J. Porter & G. le Chat
Projects: None

Publication Status: A & A Submitted
Last Modified: 2011-07-07 16:05
Go to main E-Print page  Multi-Wavelength Observations of a Flux Rope Failed in the Eruption and Associated M-Class Flare from NOAA AR 11045  Particle acceleration by circularly and elliptically polarised dispersive Alfven waves in a transversely inhomogeneous plasma in the inertial and kinetic regimes  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?
The development of lower-atmosphere turbulence early in a solar flare
Determining the parameter for the linear force-free magnetic field model with multi-dipolar configurations using deep neural networks
No unique solution to the seismological problem of standing kink MHD waves
Untwisting and Disintegration of a Solar Filament Associated with Photospheric Flux Cancellation
Modeling of the sunspot-associated microwave emission using a new method of DEM inversion
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University