E-Print Archive

There are 3783 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Height structure of X-ray, EUV and white-light emission in a solar flare View all abstracts by submitter

Marina Battaglia   Submitted: 2011-07-21 03:56

Context. The bulk of solar flare emission originates from very compact sources located in the lower solar atmosphere and observable at a broad range of wavelengths such as near optical, UV, EUV, soft and hard X-rays, and gamma-rays. Nevertheless, very few spatially resolved imaging observations have been performed to determine the structure of these compact regions.
Aims: We investigate the above-the-photosphere heights of hard X-ray (HXR), EUV, and white-light (6173 Å) continuum sources in the low atmosphere and the corresponding densities at these heights. By considering the collisional transport of solar energetic electrons, we also determine where and how much energy is deposited and compare these values with the emissions observed in HXR, EUV, and the continuum.
Methods: Simultaneous EUV/continuum images from AIA/HMI on-board SDO and HXR RHESSI images are compared to study a well-observed gamma-ray limb flare. Using RHESSI X-ray visibilities, we determine the height of the HXR sources as a function of energy above the photosphere. Co-aligning AIA/SDO and HMI/SDO images with RHESSI, we infer, for the first time, the heights and characteristic densities of HXR, EUV, and continuum (white-light) sources in the flaring footpoint of the magnetic loop.
Results: We find 35-100 keV HXR sources at heights of between 1.7 and 0.8 Mm above the photosphere, below the 6173 Å continuum emission that appears at heights 1.5-3 Mm and the peak of EUV emission originating near 3 Mm.
Conclusions: The EUV emission locations are consistent with energy deposition from low energy electrons of ~12 keV occurring in the top layers of the fully ionized chromosphere/low corona and not by ≳ 20 keV electrons that produce HXR footpoints in the lower neutral chromosphere. The maximum of white-light continuum emission appears between the HXR and EUV emission, presumably in the transition between ionized and neutral atmospheres, implying that it consists of free-bound and free-free continuum emission. We note that the energy deposited by low energy electrons is sufficient to explain the energetics of both the optical and UV emissions.

Two movies are available in electronic form at http://www.aanda.org


Authors: Marina Battaglia, Eduard P. Kontar
Projects: RHESSI,SDO-AIA,SDO-HMI

Publication Status: Astronomy & Astrophysics Letters, accepted
Last Modified: 2011-07-21 08:42
Go to main E-Print page  Spatially-Resolved Nonthermal Line Broadening During the Impulsive Phase of a Solar Flare  Bayesian magnetohydrodynamic seismology of coronal loops  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Determination of Linear Force-Free Magnetic Field Constant Alpha Using Deep Learning
Heating and cooling of coronal loops with turbulent suppression of parallel heat conduction
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms
Fluting Modes in Transversely Nonuniform Solar Flux Tubes
Super-Flaring Active Region 12673 Has One of the Fastest Magnetic Flux Emergence Ever Observed
First NuSTAR Limits on Quiet Sun Hard X-Ray Transient Events
Solar-wind predictions for the Parker Solar Probe orbit
Simulating coronal loop implosion and compressible wave modes in a flare hit active region
Development of Solar Flares and Features of the Fine Structure of Solar Radio Emission
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
Imaging Spectroscopy of Solar Radio Burst Fine Structures
On a small-scale EUV wave: the driving mechanism and the associated oscillating filament
Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer
On a solar blowout jet: driven mechanism and the formation of cool and hot components
Understanding the Role of Mass-Unloading in Filament Eruptions
Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments
The direct relation between the duration of magnetic reconnection and the evolution of GOES light curves in solar flares
Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis
Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars
Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University