E-Print Archive

There are 3897 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Height structure of X-ray, EUV and white-light emission in a solar flare View all abstracts by submitter

Marina Battaglia   Submitted: 2011-07-21 03:56

Context. The bulk of solar flare emission originates from very compact sources located in the lower solar atmosphere and observable at a broad range of wavelengths such as near optical, UV, EUV, soft and hard X-rays, and gamma-rays. Nevertheless, very few spatially resolved imaging observations have been performed to determine the structure of these compact regions.
Aims: We investigate the above-the-photosphere heights of hard X-ray (HXR), EUV, and white-light (6173 Å) continuum sources in the low atmosphere and the corresponding densities at these heights. By considering the collisional transport of solar energetic electrons, we also determine where and how much energy is deposited and compare these values with the emissions observed in HXR, EUV, and the continuum.
Methods: Simultaneous EUV/continuum images from AIA/HMI on-board SDO and HXR RHESSI images are compared to study a well-observed gamma-ray limb flare. Using RHESSI X-ray visibilities, we determine the height of the HXR sources as a function of energy above the photosphere. Co-aligning AIA/SDO and HMI/SDO images with RHESSI, we infer, for the first time, the heights and characteristic densities of HXR, EUV, and continuum (white-light) sources in the flaring footpoint of the magnetic loop.
Results: We find 35-100 keV HXR sources at heights of between 1.7 and 0.8 Mm above the photosphere, below the 6173 Å continuum emission that appears at heights 1.5-3 Mm and the peak of EUV emission originating near 3 Mm.
Conclusions: The EUV emission locations are consistent with energy deposition from low energy electrons of ~12 keV occurring in the top layers of the fully ionized chromosphere/low corona and not by ≳ 20 keV electrons that produce HXR footpoints in the lower neutral chromosphere. The maximum of white-light continuum emission appears between the HXR and EUV emission, presumably in the transition between ionized and neutral atmospheres, implying that it consists of free-bound and free-free continuum emission. We note that the energy deposited by low energy electrons is sufficient to explain the energetics of both the optical and UV emissions.

Two movies are available in electronic form at http://www.aanda.org


Authors: Marina Battaglia, Eduard P. Kontar
Projects: RHESSI,SDO-AIA,SDO-HMI

Publication Status: Astronomy & Astrophysics Letters, accepted
Last Modified: 2011-07-21 08:42
Go to main E-Print page  Spatially-Resolved Nonthermal Line Broadening During the Impulsive Phase of a Solar Flare  Bayesian magnetohydrodynamic seismology of coronal loops  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Computation of Relative Magnetic Helicity in Spherical Coordinates
Some characteristics of the GLE on 10 September 2017
Quasi-periodic Pulsations in a Solar Microflare
Homologous large-amplitude Nonlinear fast-mode Magnetosonic Waves Driven by Recurrent Coronal Jets
EUV Waves Driven by Sudden Expansion of Transequatorial Loops Caused by Solar Coronal Jets
Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament
Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO
LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts
Critical magnetic field strengths for solar coronal plumes in quiet regions and coronal holes?
Does Nearby Open Flux Affect the Eruptivity of Solar Active Regions?
Cyclic Changes of the Sun's Seismic Radius
Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of September 6, 2017
Solar Cycle Variations of Rotation and Asphericity in the Near-Surface Shear Layer
Solar coronal loop dynamics near the null point above active region NOAA 2666
Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations
The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave
Indirect solar wind measurements using archival cometary tail observations
Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun
Always a Farm Boy
Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University