E-Print Archive

There are 3914 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Frequency drifts of 3-min oscillations in microwave and EUV emission above sunspots View all abstracts by submitter

Robert Sych   Submitted: 2011-11-02 19:19

We analyse 3-min oscillations of microwave and EUV emission generated at different heights of a sunspot atmosphere, studying the amplitude and frequency modulation of the oscillations, and its relationship with the variation of the spatial structure of the oscillations. High-resolution data obtained with the Nobeyama Radioheliograph, TRACE and SDO/AIA are analysed with the use of the Pixelised Wavelet Filtering and wavelet skeleton techniques. 3-min oscillations in sunspots appear in the form of repetitive trains of the duration 8-20 min (13 min in average). The typical interval between the trains is 30-50 min. The oscillation trains are transient in frequency and power. We detected a repetitive frequency drifts of 3-min oscillations during the development of individual trains. Wavelet analysis shows three types of the frequency drift: positive, negative and fluctuations without drift. The start and end of the drifts coincide with the start time and end of the train. The comparative study of 3-min oscillations in the sequences of microwave and EUV images show the appearance of new sources of the oscillations in sunspots during the development of the trains. These structures can be interpreted as waveguides that channel upward propagating waves, responsible for 3-min oscillations. A possible explanation of the observed properties is the operation of two simultaneous factors: dispersive evolution of the upwardly-propagating wave pulses and the non-uniformity of the distribution of the oscillation power over the sunspot umbra with different wave sources corresponding to different magnetic flux tubes with different physical conditions and line-of-sight angles.

Authors: R. Sych, T. V. Zaqarashvili, V. M. Nakariakov, S.A. Anfinogentov, K.Shibasaki and Y. Yan
Projects: Nobeyama Radioheliograph,SDO-AIA,TRACE

Publication Status: A&A (in press), 2011
Last Modified: 2011-11-03 15:21
Go to main E-Print page  Thermal Properties of A Solar Coronal Cavity Observed with the X-ray Telescope on Hinode  Energy Release and Particle Acceleration in Flares: Summary and Future Prospects  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions
Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star
Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling
A Model of Zebra Patterns in Solar Radio Emission
Three-dimensional magnetic reconnection in a collapsing coronal loop system
On the Synthesis of GOES Light Curves from Numerical Models
Efficient Calculation of Non-Local Thermodynamic Equilibrium Effects in Multithreaded Hydrodynamic Simulations of Solar Flares
2D solar wind speeds from 6 to 26 solar radii in solar cycle 24 by using Fourier filtering
Non-damping oscillations at flaring loops
An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory
Computation of Relative Magnetic Helicity in Spherical Coordinates

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University