E-Print Archive

There are 4080 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Energy Release and Particle Acceleration in Flares: Summary and Future Prospects View all abstracts by submitter

Amir Caspi   Submitted: 2011-10-28 12:23

RHESSI measurements relevant to the fundamental processes of energy releaseand particle acceleration in flares are summarized. RHESSI's precisemeasurements of hard X-ray continuum spectra enable model-independentdeconvolution to obtain the parent electron spectrum. Taking into account theeffects of albedo, these show that the low energy cut-off to the electronpower-law spectrum is typically below tens of keV, confirming that theaccelerated electrons contain a large fraction of the energy released inflares. RHESSI has detected a high coronal hard X-ray source that is filledwith accelerated electrons whose energy density is comparable to themagnetic-field energy density. This suggests an efficient conversion of energy,previously stored in the magnetic field, into the bulk acceleration ofelectrons. A new, collisionless (Hall) magnetic reconnection process has beenidentified through theory and simulations, and directly observed in space andin the laboratory; it should occur in the solar corona as well, with areconnection rate fast enough for the energy release in flares. Thereconnection process could result in the formation of multiple elongatedmagnetic islands, that then collapse to bulk-accelerate the electrons, rapidlyenough to produce the observed hard X-ray emissions. RHESSI's pioneering{gamma}-ray line imaging of energetic ions, revealing footpoints straddling aflare loop arcade, has provided strong evidence that ion acceleration is alsorelated to magnetic reconnection. Flare particle acceleration is shown to havea close relationship to impulsive Solar Energetic Particle (SEP) eventsobserved in the interplanetary medium, and also to both fast coronal massejections and gradual SEP events.

Authors: R.P. Lin
Projects: GONG,Hinode/EIS,Hinode/SOT,Hinode/XRT,Nobeyama Radioheliograph,Owens Valley Solar Array,RHESSI,SDO-AIA,SDO-HMI,SDO-EVE,SoHO-EIT,SoHO-MDI,SoHO-CDS,SoHO-LASCO,SoHO-SUMER,STEREO,TRACE

Publication Status: Published -- Lin, R. P. 2011, Space Sci. Rev., 159, 421; DOI 10.1007/s11214-011-9801-0
Last Modified: 2011-11-17 14:21
Go to main E-Print page  Frequency drifts of 3-min oscillations in microwave and EUV emission above sunspots  Deducing Electron Properties From Hard X-Ray Observations  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Magnetic Helicity from Multipolar Regions on the Solar Surface
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Exoplanet predictions based on harmonic orbit resonances
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling
Interplanetary Type IV Bursts
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
Detection of spike-like structures near the front of type-II burstsA
High resolution observations with Artemis-JLS, (II) Type IV associated intermediate drift bursts
Oscillation of a small Hα surge in a solar polar coronal hole
Radio Observations of the January 20, 2005 X-Class Event
Fine Structure of Metric Type-IV Radio Bursts Observed with the ARTEMIS-IV Radio Spectrograph: Association with Flares and Coronal Mass Ejections
Spectral Analysis of the September 2017 Solar Energetic Particle Events
Solar Energetic Particle Events Observed by the PAMELA Mission

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University