E-Print Archive

There are 4559 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Energy Release and Particle Acceleration in Flares: Summary and Future Prospects View all abstracts by submitter

Amir Caspi   Submitted: 2011-10-28 12:23

RHESSI measurements relevant to the fundamental processes of energy releaseand particle acceleration in flares are summarized. RHESSI's precisemeasurements of hard X-ray continuum spectra enable model-independentdeconvolution to obtain the parent electron spectrum. Taking into account theeffects of albedo, these show that the low energy cut-off to the electronpower-law spectrum is typically below tens of keV, confirming that theaccelerated electrons contain a large fraction of the energy released inflares. RHESSI has detected a high coronal hard X-ray source that is filledwith accelerated electrons whose energy density is comparable to themagnetic-field energy density. This suggests an efficient conversion of energy,previously stored in the magnetic field, into the bulk acceleration ofelectrons. A new, collisionless (Hall) magnetic reconnection process has beenidentified through theory and simulations, and directly observed in space andin the laboratory; it should occur in the solar corona as well, with areconnection rate fast enough for the energy release in flares. Thereconnection process could result in the formation of multiple elongatedmagnetic islands, that then collapse to bulk-accelerate the electrons, rapidlyenough to produce the observed hard X-ray emissions. RHESSI's pioneering{gamma}-ray line imaging of energetic ions, revealing footpoints straddling aflare loop arcade, has provided strong evidence that ion acceleration is alsorelated to magnetic reconnection. Flare particle acceleration is shown to havea close relationship to impulsive Solar Energetic Particle (SEP) eventsobserved in the interplanetary medium, and also to both fast coronal massejections and gradual SEP events.

Authors: R.P. Lin
Projects: GONG,Hinode/EIS,Hinode/SOT,Hinode/XRT,Nobeyama Radioheliograph,Owens Valley Solar Array,RHESSI,SDO-AIA,SDO-HMI,SDO-EVE,SoHO-EIT,SoHO-MDI,SoHO-CDS,SoHO-LASCO,SoHO-SUMER,STEREO,TRACE

Publication Status: Published -- Lin, R. P. 2011, Space Sci. Rev., 159, 421; DOI 10.1007/s11214-011-9801-0
Last Modified: 2011-11-17 14:21
Go to main E-Print page  Frequency drifts of 3-min oscillations in microwave and EUV emission above sunspots  Deducing Electron Properties From Hard X-Ray Observations  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Comparison of solar activity proxies: eigenvectors versus averaged sunspot numbers
A comparative study of resistivity models for simulations of magnetic reconnection in the solar atmosphere
Links of Terrestrial Volcanic Eruptions to Solar Activity and Solar Magnetic Field
Periodicities in Solar Activity, Solar Radiation and Their Links with Terrestrial Environment
Transverse vertical oscillations during the contraction and expansion of coronal loops
New Evidence on the Origin of Solar Wind Microstreams/Switchbacks
The Merging of a Coronal Dimming and the Southern Polar Coronal Hole
Complete replacement of magnetic flux in a flux rope during a coronal mass ejection
The SunPy Project: An Interoperable Ecosystem for Solar Data Analysis
Evidence of external reconnection between an erupting mini-filament and ambient loops observed by Solar Orbiter/EUI
Ultra-high-resolution Observations of Persistent Null-point Reconnection in the Solar Corona
The Evolution of Plasma Composition During a Solar Flare
The efficiency of electron acceleration during the impulsive phase of a solar flare
Evolution of Solar Eruptive Events: Investigating the Relationships Among Magnetic Reconnection, Flare Energy Release, and Coronal Mass Ejections
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University