E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Solar Photospheric-to-Coronal Fe abundance from X-ray Fluorescence Lines View all abstracts by submitter

Kenneth Phillips   Submitted: 2012-01-03 05:44

The ratio of the Fe abundance in the photosphere to that in coronal flare plasmas is determined by X-ray lines within the complex at 6.7 keV (1.9~AA) emitted during flares. The line complex includes the He-like Fe (fexxv) resonance line w (6.70 keV) and Fe K α lines (6.39, 6.40 keV), the latter being primarily formed by the fluorescence of photospheric material by X-rays from the hot flare plasma. The ratio of the Fe K α lines to the fexxv w depends on the ratio of the photospheric-to-flare Fe abundance, heliocentric angle heta of the flare, and the temperature Te of the flaring plasma. Using high-resolution spectra from X-ray spectrometers on the {em P78-1} and {em Solar Maximum Mission} spacecraft, the Fe abundance in flares is estimated to be 1.6pm 0.5 and 2.0 pm 0.3 times the photospheric Fe abundance, the {em P78-1} value being preferred as it is more directly determined. This enhancement is consistent with results from X-ray spectra from the {em RHESSI} spacecraft, but is significantly less than a factor 4 as in previous work.

Authors: K. J. H. Phillips
Projects: Yohkoh-BCS

Publication Status: Accepted by MNRAS
Last Modified: 2012-01-03 08:25
Go to main E-Print page  Wave-particle interactions in non-uniform plasma and the interpretation of Hard X-ray spectra in solar flares  Heating of Flare Loops With Observationally Constrained Heating Functions  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University