E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Impulsive Phase Coronal Hard X-ray Sources in an X3.9 Class Solar Flare View all abstracts by submitter

Qingrong Chen   Submitted: 2012-01-10 12:56

[Abridged]We present analysis of a pair of unusually energetic coronal hardX-ray (HXR) sources detected by RHESSI during the impulsive phase of an X3.9class solar flare on 2003 November 3, which simultaneously shows two intensefootpoint (FP) sources. A distinct loop top (LT) coronal source is detected upto ~150 keV and a second (upper) coronal source up to ~80 keV. These photonenergies are much higher than commonly observed in coronal sources and posegrave modeling challenges. The LT source in general appears higher in altitudewith increasing energy and exhibits a more limited motion compared to theexpansion of the thermal loop. The high energy LT source shows an impulsivetime profile and its nonthermal power law spectrum exhibits soft-hard-softevolution during the impulsive phase, similar to the FP sources. The uppercoronal source exhibits an opposite spatial gradient and a similar spectralslope compared to the LT source. These properties are consistent with the modelof stochastic acceleration of electrons by plasma waves or turbulence. However,the LT and FP spectral index difference (varying from ~0-1) is much smallerthan commonly measured and than that expected from a simple stochasticacceleration model. Additional confinement or trapping mechanisms of highenergy electrons in the corona are required. Comprehensive modeling includingboth kinetic effects and the macroscopic flare structure may shed light on thisbehavior. These results highlight the importance of imaging spectroscopicobservations of the LT and FP sources up to high energies in understandingelectron acceleration in solar flares. Finally, we show that the electronsproducing the upper coronal HXR source may very likely be responsible for thetype III radio bursts at the decimetric/metric wavelength observed during theimpulsive phase of this flare.

Authors: Qingrong Chen, Vahé Petrosian
Projects: RHESSI

Publication Status: accepted for publication in ApJ
Last Modified: 2012-01-10 15:42
Go to main E-Print page  What can we learn about solar coronal mass ejections, coronal dimmings, and Extreme-Ultraviolet jets through spectroscopic observations?  Magnetoacoustic waves in diagnostics of the flare current sheets  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University