E-Print Archive

There are 4099 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Formation and evolution of a multi-threaded prominence View all abstracts by submitter

Manuel Luna   Submitted: 2012-01-18 09:22

We investigate the process of formation and subsequent evolution ofprominence plasma in a filament channel and its overlying arcade. We constructa three-dimensional time-dependent model of an intermediate quiescentprominence. We combine the magnetic field structure with one-dimensionalindependent simulations of many flux tubes, of a three-dimensional sheareddouble arcade, in which the thermal nonequilibrium process governs the plasmaevolution. We have found that the condensations in the corona can be dividedinto two populations: threads and blobs. Threads are massive condensations thatlinger in the field line dips. Blobs are ubiquitous small condensations thatare produced throughout the filament and overlying arcade magnetic structure,and rapidly fall to the chromosphere. The threads are the principalcontributors to the total mass. The total prominence mass is in agreement withobservations, assuming a reasonable filling factor. The motion of the threadsis basically horizontal, while blobs move in all directions along the field.The peak velocities for both populations are comparable. We have generatedsynthetic images of the whole structure in an Hα proxy and in two EUVchannels of the AIA instrument aboard SDO, thus showing the plasma at cool,warm, and hot temperatures. The predicted differential emission measure of oursystem agrees very well with observations. We conclude that the sheared-arcademagnetic structure and plasma behavior driven by thermal nonequilibrium fitwell the abundant observational evidence for typical intermediate prominences.

Authors: M. Luna, J. T. Karpen, C. R. DeVore
Projects: None

Publication Status: ApJ, in press (ApJ, 746, 30)
Last Modified: 2012-01-18 10:28
Go to main E-Print page  Magnetohydrodynamic Waves in Partially Ionized Prominence Plasmas  Evolution of Magnetic Field and Energy in A Major Eruptive Active Region Based on SDO/HMI Observation  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University