E-Print Archive

There are 3947 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Differential Emission Measures from the Regularized Inversion of Hinode and SDO data View all abstracts by submitter

Iain Hannah   Submitted: 2012-01-23 11:24

We develop and apply an enhanced regularization algorithm, used inRHESSI X-ray spectral analysis, to constrain the ill-posed inverseproblem that is determining the DEM from solar observations. Wedemonstrate this computationally fast technique applied to a range ofDEM models simulating broadband imaging data from SDO/AIA and highresolution line spectra from Hinode/EIS, as well as actual activeregion observations with Hinode/EIS and XRT. As this regularizationmethod naturally provides both vertical and horizontal (temperatureresolution) error bars we are able to test the role of uncertaintiesin the data and response functions. The regularization method is ableto successfully recover the DEM from simulated data of a variety ofmodel DEMs (single Gaussian, multiple Gaussians and CHIANTI DEMmodels). It is able to do this, at best, to over four orders ofmagnitude in DEM space but typically over two orders of magnitude frompeak emission. The combination of horizontal and vertical error barsand the regularized solution matrix allows us to easily determine theaccuracy and robustness of the regularized DEM. We find that thetypical range for the horizontal errors is DeltalogTapprox 0.1-0.5 and this is dependent on the observed signal to noise,uncertainty in the response functions as well as the source model andtemperature. With Hinode/EIS an uncertainty of 20% greatly broadensthe regularized DEMs for both Gaussian and CHIANTI models althoughinformation about the underlying DEMs is still recoverable. Whenapplied to real active region observations with Hinode/EIS and XRT theregularization method is able to recover a DEM similar to that foundvia a MCMC method but in considerably less computational time.

Download page contains links to both the preprint in arXiv as well as the codes used.

Authors: I. G. Hannah, E. P. Kontar
Projects: Hinode/EIS,Hinode/XRT,SDO-AIA,SDO-EVE

Publication Status: A&A (accepted)
Last Modified: 2012-01-24 11:24
Go to main E-Print page  Stability of thermal modes in cool prominence plasmas  WAVE LEAKAGE AND RESONANT ABSORPTION IN A LOOP EMBEDDED IN A CORONAL ARCADE  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation
A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares
Observations of Turbulent Magnetic Reconnection Within a Solar Current Sheet
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University