E-Print Archive

There are 3872 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The relationship between hard X-ray pulse timings and the locations of footpoint sources during solar flares View all abstracts by submitter

Andrew Inglis   Submitted: 2012-01-27 10:56

The cause of quasi-periodic pulsations (QPP) in solar flares remainsthe subject of debate.Recently, Nakariakov & Zimovets (2011) proposed a new model suggestingthat, in two-ribbonflares, such pulsations could be explained by propagating slow waves.These waves may travelobliquely to the magnetic field, reflect in the chromosphere andconstructively interfere at aspatially separate site in the corona, leading to quasi-periodicreconnection events progressingalong the flaring arcade. Such a slow wave regime would have certainobservational characteristics.We search for evidence of this phenomenon during a selection oftwo-ribbon flares observed byRHESSI, SOHO and TRACE; the flares of 2002 November 9, 2005 January 19and 2005 August22. We were not able to observe a clear correlation between hard X-rayfootpoint separationsand pulse timings during these events. Also, the motion of hard X-rayfootpoints is shown to becontinuous within the observational error, whereas a discontinuousmotion might be anticipatedin the slow wave model. Finally, we find that for a preferential slowwave propagation angle of25-28 degrees that is expected for the fastest waves, the velocitiesof the hard X-ray footpointslead to estimated pulse periods and ribbon lengths significantlylarger than the measured values.Hence, for the three events studied, we conclude that theobservational characteristics cannot beeasily explained via the Nakariakov & Zimovets (2011) propagating slowwave model when onlyangles of 25-28 degrees are considered. We provide suggested flareparameters to optimise futurestudies of this kind.

Authors: A. R. Inglis & B. R. Dennis
Projects: RHESSI,SoHO-EIT,TRACE

Publication Status: ApJ (accepted)
Last Modified: 2012-01-27 22:34
Go to main E-Print page  Prominence seismology  Observations of Enhanced EUV Continua During An X-class Solar Flare Using SDO/EVE  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Two Episodes of Magnetic Reconnections During a Confined Circular-ribbon Flare
Enhanced stellar activity for slow antisolar differential rotation?
Quasi-periodic pulsations in the most powerful solar flare of Cycle 24
GONG Catalog of Solar Filament Oscillations Near Solar Maximum
Chromospheric response during the precursor and the main phase of a B6.4 flare on August 20, 2005
Unambiguous Evidence of Coronal Implosions During Solar Eruptions and Flares
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
Oscillations of cometary tails: a vortex shedding phenomenon?
Observations of Running Penumbral Waves Emerging in a Sunspot
Reconnection in the Post-Impulsive Phase of Solar Flares
Temperature of source regions of 3He-rich impulsive solar energetic particles events
3He-rich Solar Energetic Particles in Helical Jets on the Sun
On the importance of the nonequilibrium ionization of Si IV and O IV and the line-of-sight in solar surges
Was the cosmic ray burst detected by the GRAPES-3 on 22 June 2015 caused by transient weakening of geomagnetic field or by an interplanetary anisotropy?
Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects
Studies of Isolated and Non-isolated Photospheric Bright Points in an Active Region Observed by the New Vacuum Solar Telescope
Fermi-LAT observations of the 2017 September 10th solar flare
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University