E-Print Archive

There are 4080 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Turbulent cross-field transport of non-thermal electrons in coronal loops: theory and observations View all abstracts by submitter

Eduard Kontar   Submitted: 2012-02-01 15:17

Context. A fundamental problem in astrophysics is the interactionbetween magnetic turbulence and charged particles. It is now possibleto use Ramaty High Energy Solar Spectroscopic Imager (RHESSI)observations of hard X-rays (HXR) emitted by electrons to identify thepresence of turbulence and to estimate the magnitude of the magneticfield line diffusion coefficient at least in dense coronal flaringloops.
Aims: We discuss the various possible regimes of cross-field transportof non-thermal electrons resulting from broadband magnetic turbulencein coronal loops. The importance of the Kubo number K as a governingparameter is emphasized and results applicable in both the large andsmall Kubo number limits are collected.
Methods: Generic models, based on concepts and insights developed inthe statistical theory of transport, are applied to the coronal loopsand to the interpretation of hard X-ray imaging data in solar flares.The role of trapping effects, which become important in the non-linearregime of transport, is taken into account in the interpretation ofthe data.
Results: For this flaring solar loop, we constrain the ranges ofparallel and perpendicular correlation lengths of turbulent magneticfields and possible Kubo numbers. We show that a substantial amount ofmagnetic fluctuations with energy ~1% (or more) of the backgroundfield can be inferred from the measurements of the magnetic diffusioncoefficient inside thick-target coronal loops.

Authors: Bian, N. H.; Kontar, E. P.; MacKinnon, A. L.
Projects: RHESSI

Publication Status: published in Astronomy and Astrophysics
Last Modified: 2012-02-03 12:03
Go to main E-Print page  Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event  Prominence seismology  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Magnetic Helicity from Multipolar Regions on the Solar Surface
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Exoplanet predictions based on harmonic orbit resonances
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling
Interplanetary Type IV Bursts
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
Detection of spike-like structures near the front of type-II burstsA
High resolution observations with Artemis-JLS, (II) Type IV associated intermediate drift bursts
Oscillation of a small Hα surge in a solar polar coronal hole
Radio Observations of the January 20, 2005 X-Class Event
Fine Structure of Metric Type-IV Radio Bursts Observed with the ARTEMIS-IV Radio Spectrograph: Association with Flares and Coronal Mass Ejections
Spectral Analysis of the September 2017 Solar Energetic Particle Events
Solar Energetic Particle Events Observed by the PAMELA Mission

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University