E-Print Archive

There are 3637 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic reconnection from a multiscale instability cascade View all abstracts by submitter

Paul Bellan   Submitted: 2012-02-15 21:51

Magnetic reconnection, the process whereby magnetic field lines breakand then reconnect to form a different topology, underlies criticaldynamics of magnetically confined plasmas in both natura1, andthe laboratory. Magnetic reconnection involves localizeddiffusion of the magnetic field across plasma, yet observedreconnection rates are typically much higher than can be accounted forusing classical electrical resistivity. It is generally proposedthat the field diffusion underlying fast reconnection results insteadfrom some combination of non-magnetohydrodynamic processes that becomeimportant on the 'microscopic' scale of the ion Larmor radius or theion skin depth. A recent laboratory experiment11 demonstrated atransition from slow to fast magnetic reconnection when a currentchannel narrowed to a microscopic scale, but did not address how amacroscopic magnetohydrodynamic system accesses the microscale. Recenttheoretical models and numerical simulations suggest that amacroscopic, two-dimensional magnetohydrodynamic current sheet mightdo this through a sequence of repetitive tearing and thinning intotwo-dimensional magnetized plasma structures having successively finerscales. Here we report observations demonstrating a cascade ofinstabilities from a distinct, macroscopic-scale magnetohydrodynamicinstability to a distinct, microscopic-scale (ion skin depth)instability associated with fast magnetic reconnection. Theseobservations resolve the full three-dimensional dynamics and giveinsight into the frequently impulsive nature of reconnection in spaceand laboratory plasmas.

Authors: Auna L. Moser & Paul M. Bellan
Projects: None

Publication Status: published as a Nature Letter, February 16, 2012, online on Feb 15
Last Modified: 2012-02-17 08:42
Go to main E-Print page  On the Role of the Background Overlying Magnetic Field in Solar 
Eruptions  Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal loop density profile estimated by forward modelling of EUV intensity
The magnetic connectivity of coronal shocks to the visible solar surface during long-duration gamma-ray events
Dissipative instability in a partially ionised prominence slab
Significance testing for quasi-periodic pulsations in solar and stellar flares
High Resolution Observations of a White Light Flare with NST
Flare forecasting at the Met Office Space Weather Operations Centre
On the Effectiveness of Multi-Instrument Solar Flare Observations During Solar Cycle 24
The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: Method Development and Benchmark Studies
Long-Period Intensity Pulsations in Coronal Loops Explained by Thermal Non-Equilibrium Cycles
Differences between Doppler velocities of ions and neutral atoms in a solar prominence
Interaction of Two Active Region Filaments Observed by NVST and SDO
On flare-CME characteristics from Sun to Earth combining remote-sensing image data with in-situ measurements supported by modeling
High-frequency transverse oscillations and intensity perturbations in spicular-type events
Sheath-Accumulating Propagation of Interplanetary Coronal Mass Ejection
Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections
Apparent and Intrinsic Evolution of Active Region Upflows
An Early Diagnostics of the Geoeffectiveness of Solar Eruptions from Photospheric Magnetic Flux Observations: The Transition from SOHO to SDO
Plasma Brightenings in a Failed Solar Filament Eruption
Interactive Multi-Instrument Database of Solar Flares
Moreton and EUV Waves Associated with an X1.0 Flare and CME Ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University