E-Print Archive

There are 3872 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic reconnection from a multiscale instability cascade View all abstracts by submitter

Paul Bellan   Submitted: 2012-02-15 21:51

Magnetic reconnection, the process whereby magnetic field lines breakand then reconnect to form a different topology, underlies criticaldynamics of magnetically confined plasmas in both natura1, andthe laboratory. Magnetic reconnection involves localizeddiffusion of the magnetic field across plasma, yet observedreconnection rates are typically much higher than can be accounted forusing classical electrical resistivity. It is generally proposedthat the field diffusion underlying fast reconnection results insteadfrom some combination of non-magnetohydrodynamic processes that becomeimportant on the 'microscopic' scale of the ion Larmor radius or theion skin depth. A recent laboratory experiment11 demonstrated atransition from slow to fast magnetic reconnection when a currentchannel narrowed to a microscopic scale, but did not address how amacroscopic magnetohydrodynamic system accesses the microscale. Recenttheoretical models and numerical simulations suggest that amacroscopic, two-dimensional magnetohydrodynamic current sheet mightdo this through a sequence of repetitive tearing and thinning intotwo-dimensional magnetized plasma structures having successively finerscales. Here we report observations demonstrating a cascade ofinstabilities from a distinct, macroscopic-scale magnetohydrodynamicinstability to a distinct, microscopic-scale (ion skin depth)instability associated with fast magnetic reconnection. Theseobservations resolve the full three-dimensional dynamics and giveinsight into the frequently impulsive nature of reconnection in spaceand laboratory plasmas.

Authors: Auna L. Moser & Paul M. Bellan
Projects: None

Publication Status: published as a Nature Letter, February 16, 2012, online on Feb 15
Last Modified: 2012-02-17 08:42
Go to main E-Print page  On the Role of the Background Overlying Magnetic Field in Solar 
Eruptions  Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Two Episodes of Magnetic Reconnections During a Confined Circular-ribbon Flare
Enhanced stellar activity for slow antisolar differential rotation?
Quasi-periodic pulsations in the most powerful solar flare of Cycle 24
GONG Catalog of Solar Filament Oscillations Near Solar Maximum
Chromospheric response during the precursor and the main phase of a B6.4 flare on August 20, 2005
Unambiguous Evidence of Coronal Implosions During Solar Eruptions and Flares
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
Oscillations of cometary tails: a vortex shedding phenomenon?
Observations of Running Penumbral Waves Emerging in a Sunspot
Reconnection in the Post-Impulsive Phase of Solar Flares
Temperature of source regions of 3He-rich impulsive solar energetic particles events
3He-rich Solar Energetic Particles in Helical Jets on the Sun
On the importance of the nonequilibrium ionization of Si IV and O IV and the line-of-sight in solar surges
Was the cosmic ray burst detected by the GRAPES-3 on 22 June 2015 caused by transient weakening of geomagnetic field or by an interplanetary anisotropy?
Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects
Studies of Isolated and Non-isolated Photospheric Bright Points in an Active Region Observed by the New Vacuum Solar Telescope
Fermi-LAT observations of the 2017 September 10th solar flare
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University