E-Print Archive

There are 3835 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic reconnection from a multiscale instability cascade View all abstracts by submitter

Paul Bellan   Submitted: 2012-02-15 21:51

Magnetic reconnection, the process whereby magnetic field lines breakand then reconnect to form a different topology, underlies criticaldynamics of magnetically confined plasmas in both natura1, andthe laboratory. Magnetic reconnection involves localizeddiffusion of the magnetic field across plasma, yet observedreconnection rates are typically much higher than can be accounted forusing classical electrical resistivity. It is generally proposedthat the field diffusion underlying fast reconnection results insteadfrom some combination of non-magnetohydrodynamic processes that becomeimportant on the 'microscopic' scale of the ion Larmor radius or theion skin depth. A recent laboratory experiment11 demonstrated atransition from slow to fast magnetic reconnection when a currentchannel narrowed to a microscopic scale, but did not address how amacroscopic magnetohydrodynamic system accesses the microscale. Recenttheoretical models and numerical simulations suggest that amacroscopic, two-dimensional magnetohydrodynamic current sheet mightdo this through a sequence of repetitive tearing and thinning intotwo-dimensional magnetized plasma structures having successively finerscales. Here we report observations demonstrating a cascade ofinstabilities from a distinct, macroscopic-scale magnetohydrodynamicinstability to a distinct, microscopic-scale (ion skin depth)instability associated with fast magnetic reconnection. Theseobservations resolve the full three-dimensional dynamics and giveinsight into the frequently impulsive nature of reconnection in spaceand laboratory plasmas.

Authors: Auna L. Moser & Paul M. Bellan
Projects: None

Publication Status: published as a Nature Letter, February 16, 2012, online on Feb 15
Last Modified: 2012-02-17 08:42
Go to main E-Print page  On the Role of the Background Overlying Magnetic Field in Solar 
Eruptions  Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares
Unambiguous Evidence of Filament Splitting-Induced Partial Eruptions
On the Origin of the Double-cell Meridional Circulation in the Solar Convection Zone
Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares
Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnotics
Plasma evolution within an erupting coronal cavity
Identification of multiple hard X-ray sources in solar flares: A Bayesian analysis of the February 20 2002 event
Flux Rope Breaking and Formation of a Rotating Blowout Jet
On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory
Two-Phase Heating in Flaring Loops
Evidence For The Magnetic Breakout Model in an Equatorial Coronal-Hole Jet
Spontaneous flux concentrations from the negative effective magnetic pressure instability beneath a radiative stellar surface
Powerful Solar Flares of September 2017: Correspondence Between Parameters of Microwave Bursts and Proton Fluxes near Earth
Evaluation of Applicability of a Flare Trigger Model based on Comparison of Geometric Structures
Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model
Formation and Dynamics of a Solar Eruptive Flux Tube
The Instruments and Capabilities of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats
Fine Structures of Solar Radio Type III Bursts and their Possible Relationship with Coronal Density Turbulence
Influence of misalignments on the performance of externally occulted solar coronagraphs. Application to PROBA-3/ASPIICS
Observations of Electron-driven Evaporation during a Flare Precursor

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University