E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Estimation of the squashing degree within a three-dimensional domain View all abstracts by submitter

Etienne Pariat   Submitted: 2012-03-05 03:01

The study of the magnetic topology of magnetic fields aims at determining the key sites for the development of magnetic reconnection. Quasi-separatrix layers (QSLs), regions of strong connectivity gradients, are topological structures where intense-electric currents preferentially build-up, and where, later on, magnetic reconnection occurs. QSLs are volumes of intense squashing degree, Q; the field-line invariant quantifying the deformation of elementary flux tubes. QSL are complex and thin three-dimensional (3D) structures difficult to visualize directly. Therefore Q maps, i.e. 2D cuts of the 3D magnetic domain, are a more and more common features used to study QSLs. We analyze several methods to derive 2D Q maps and discuss their analytical and numerical properties. These methods can also be used to compute Q within the 3D domain. We demonstrate that while analytically equivalent, the numerical implementation of these methods can be significantly different. We derive the analytical formula and the best numerical methodology that should be used to compute Q inside the 3D domain. We illustrate this method with two twisted magnetic configurations: a theoretical case and a non-linear force free configuration derived from observations. The representation of QSL through 2D planar cuts is an efficient procedure to derive the geometry of these structures and to relate them with other quantities, e.g. electric currents and plasma flows. It will enforce a more direct comparison of the role of QSL in magnetic reconnection.

Authors: E. Pariat & P. Demoulin
Projects:

Publication Status: accepted in A&A
Last Modified: 2012-03-07 07:39
Go to main E-Print page  Field Topology Analysis of a Long-Lasting Coronal Sigmoid  Solar Intranetwork Magnetic Elements: bipolar flux appearance  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University