E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
On the inverse cascade of magnetic helicity View all abstracts by submitter

Pablo Mininni   Submitted: 2006-03-29 11:04

We study the inverse cascade of magnetic helicity in conducting fluids, as pertinent to the generation and dynamics of magnetic fields as observed, e.g., in the solar corona, by investigating the detailed transfer of helicity between different spherical shells in Fourier space in direct numerical simulations of three-dimensional magnetohydrodynamics (MHD). Two different numerical simulations are used, one in which the system is forced with an electromotive force in the induction equation and one in which the system is forced mechanically with an ABC flow and the magnetic field is solely sustained by a dynamo action. The magnetic helicity cascade at the initial stages of both simulations is observed to be inverse and local (in scale space) at large scales and direct and local at small scales. When saturation is approached, most of the helicity is concentrated at large scales and the cascade is nonlocal. Helicity is transferred directly from the forced scales to the largest scales. At the same time, a smaller in amplitude direct cascade is observed from the largest scale to small scales.

Authors: Alexakis A., Mininni P.D., Pouquet A.
Projects: None

Publication Status: ApJ (accepted), also arXiv:physics/0509069
Last Modified: 2006-03-29 11:17
Go to main E-Print page  On the propagation of brightening after filament/prominence eruptions, as seen by SoHO-EIT  Properties of Flares-Generated Seismic Waves on the Sun  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University