E-Print Archive

There are 3950 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Expansion of magnetic clouds in the outer heliosphere View all abstracts by submitter

Pascal Demoulin   Submitted: 2012-04-17 09:55

A large amount of magnetized plasma are frequently ejected from the Sun as Coronal Mass Ejections (CMEs). A part of these ejections are detected in the solar wind as magnetic clouds (MCs) which have flux rope signatures. MCs are typically expanding structures in the inner heliosphere. The aim of this work is to derive the expansion properties of MCs in the outer heliosphere from 1 to 5 AU and to compare them to the ones in the inner heliosphere. We analyze MCs observed by the Ulysses spacecraft using in situ magnetic field and plasma measurements. The MC boundaries are defined in the MC frame after defining the MC axis with a minimum variance method applied only to the flux rope structure. As in the inner heliosphere, a large fraction of the velocity profile within MCs is close to a linear function of time. This implies a self-similar expansion and a MC size that locally follows a power-law of the solar distance with an exponent called zeta. We derive the value of zeta from the in situ velocity data. We analyze separately the non-perturbed MCs (cases presenting a linear velocity profile almost for the full event), and perturbed MCs (cases presenting a strongly distorted velocity profile). We find that non-perturbed MCs expand with a similar non-dimensional expansion rate (zeta = 1.05 ± 0.34), i.e. slightly faster than the solar distance and than in the inner heliosphere (zeta = 0.91± 0.23). The subset of perturbed MCs expands, as in the inner heliosphere, with a significant lower rate and with a larger dispersion (zeta = 0.28 ± 0.52) as expected from the temporal evolution found in numerical simulations. This local measure of the expansion is also in agreement with the distribution with distance of MC size, mean magnetic field and plasma parameters. The MCs in interaction with a strong field region, e.g. another MC, have the most variable expansion rate (ranging from compression to over-expansion).

Authors: A.M. Gulisano, P. Demoulin, S. Dasso, L. Rodriguez
Projects: None

Publication Status: in press, A&A
Last Modified: 2012-04-17 13:54
Go to main E-Print page  Solar origin of in-situ near-relativistic electron spikes observed with SEPT/STEREO  Observation and Simulation of Longitudinal Oscillations of an Active Region Prominence  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Frequency rising sub-THz emission from solar flare ribbons
Particle acceleration in coalescent and squashed magnetic islands I. Test particle approach
Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions
Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University