E-Print Archive

There are 4559 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Enthalpy-based Thermal Evolution of Loops: II. Improvements to the Model View all abstracts by submitter

Stephen Bradshaw   Submitted: 2012-04-27 12:21

This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model ?Enthalpy-based Thermal Evolution of Loops? (EBTEL) proposed by Klimchuk et al (2008), which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modelling of mass exchange between the corona and transition region and chromosphere in response to heating variations, with the key parameter being the ratio of transition region to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (a) quick-look results of loop evolution in response to a given heating function, (b) extensive parameter surveys and (c) situations where the modelling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

Authors: Peter J. Cargill, Stephen J. Bradshaw, James A. Klimchuk
Projects: None

Publication Status: ApJ (in press)
Last Modified: 2012-04-28 10:35
Go to main E-Print page  Dynamo-driven plasmoid ejections above a spherical surface  Hinode/EIS Spectroscopic Validation of Very Hot Plasma Imaged with the Solar Dynamics Observatory in Non-flaring Active Region Cores  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Comparison of solar activity proxies: eigenvectors versus averaged sunspot numbers
A comparative study of resistivity models for simulations of magnetic reconnection in the solar atmosphere
Links of Terrestrial Volcanic Eruptions to Solar Activity and Solar Magnetic Field
Periodicities in Solar Activity, Solar Radiation and Their Links with Terrestrial Environment
Transverse vertical oscillations during the contraction and expansion of coronal loops
New Evidence on the Origin of Solar Wind Microstreams/Switchbacks
The Merging of a Coronal Dimming and the Southern Polar Coronal Hole
Complete replacement of magnetic flux in a flux rope during a coronal mass ejection
The SunPy Project: An Interoperable Ecosystem for Solar Data Analysis
Evidence of external reconnection between an erupting mini-filament and ambient loops observed by Solar Orbiter/EUI
Ultra-high-resolution Observations of Persistent Null-point Reconnection in the Solar Corona
The Evolution of Plasma Composition During a Solar Flare
The efficiency of electron acceleration during the impulsive phase of a solar flare
Evolution of Solar Eruptive Events: Investigating the Relationships Among Magnetic Reconnection, Flare Energy Release, and Coronal Mass Ejections
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University