E-Print Archive

There are 4099 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Study of flare energy release using events with numerous type III-like bursts in microwaves View all abstracts by submitter

Natalia Meshalkina   Submitted: 2012-06-19 18:15

The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows to obtain unique information about primary energy release mechanisms in solar flares. The SSRT spatially resolved images and a high spectral and temporal resolution allow direct determination not only the positions of its sources but also the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when the SSRT (about 5.7 GHz) is observing the flare region in two high-order fringes; thus, two 1D scans are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14 Apr 2002 is presented. Using-muliwavelength radio observations recorded by SSRT, SBRS, NoRP, RSTN we study an event with series of several tens of drifting microwave pulses with drift rates in the range from -7 to 13 GHz/s. The sources of the fast-drifting bursts were located near the top of the flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch-anisotropy of the emitting electrons.

Authors: N. S. Meshalkina, A. T. Altyntsev, D. A. Zhdanov, S. V. Lesovoi, A. A. Kochanov, Yan Yihua, Tan Chengming
Projects: None

Publication Status: Solar Physics, in press
Last Modified: 2012-06-20 12:11
Go to main E-Print page  Lagrangian coherent structures in photospheric flows and their implications for coronal magnetic structure  Properties of the Acceleration Regions in Several Loop-structured Solar Flares  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University