E-Print Archive

There are 4571 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Nonlinear small-scale dynamos at low magnetic Prandtl numbers View all abstracts by submitter

Axel Brandenburg   Submitted: 2012-07-07 13:12

Saturated small-scale dynamo solutions driven by isotropic non-helical turbulence are presented at low magnetic Prandtl numbers Pm down to 0.01. For Pm < 0.1, most of the energy is dissipated via Joule heat and, in agreement with earlier results for helical large-scale dynamos, kinetic energy dissipation is shown to diminish proportional to Pm1/2 down to values of 0.1. In agreement with earlier work, there is, in addition to a short Golitsyn k-11/3 spectrum near the resistive scale also some evidence for a short k-1 spectrum on larger scales. The rms magnetic field strength of the small-scale dynamo is found to depend only weakly on the value of Pm and decreases by about a factor of 2 as Pm is decreased from 1 to 0.01. The possibility of dynamo action at Pm=0.1 in the nonlinear regime is argued to be a consequence of a suppression of the bottleneck seen in the kinetic energy spectrum in the absence of a dynamo and, more generally, a suppression of kinetic energy near the dissipation wavenumber.

Authors: Axel Brandenburg
Projects: None

Publication Status: Astrophys. J. 741, 92 (2011)
Last Modified: 2012-07-07 14:47
Go to main E-Print page  A Nonlinear Force-Free Magnetic Field Approximation         Suitable for Fast Forward-Fitting to Coronal Loops. I. Theory  Slow Rise and Partial Eruption of a Double-Decker Filament. I Observations and Interpretation  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University