E-Print Archive

There are 4524 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Nonlinear evolution of torsional Alfvén waves View all abstracts by submitter

Soheil Vasheghani Farahani   Submitted: 2012-07-31 03:38

We study the efficiency of the energy transfer to shorter scales in the field-aligned direction - the parallel nonlinear cascade - that accompanies the propagation of torsional Alfvén waves along open magnetic fields in the solar and stellar coronae, and compare it with the same effects for the shear Alfvén wave. The evolution of the torsional Alfvén wave is caused by the back reaction of nonlinearly induced compressive perturbations on the Alfvén wave. The evolution of upwardly propagating torsional Alfvén waves is considered in terms of the second-order thin flux-tube approximation in a straight untwisted and non-rotating magnetic flux-tube. The Cohen-Kulsrud equation for weakly nonlinear torsional waves is derived. In the model, the effect of the cubic nonlinearity on the propagation of long-wavelength axisymmetric torsional waves is compared with the similar effect that accompanies the propagation of plane linearly-polarised (shear) Alfvén waves of small amplitude. The solution to the Cohen-Kulsrud type equation for torsional waves shows that their evolution is independent of the plasma-?, which is in contrast to the shear Alfvén wave. In a finite-? plasma, the nonlinear evolution of torsional Alfvén waves is slower and the parallel nonlinear cascade is less efficient than those of shear Alfvén waves. These results have important implications for the analysis of possible heating of the plasma and its acceleration in the upper layers of solar and stellar coronae. In particular, one-dimensional models of coronal heating and wave acceleration, which use shear Alfvén waves instead of torsional Alfvén waves, over-estimate the efficiency of these processes.

Authors: S. Vasheghani Farahani, V. M. Nakariakov, E. Verwichte, and T. Van Doorsselaere
Projects: None

Publication Status: Accepted by A&A
Last Modified: 2012-08-02 12:56
Go to main E-Print page  Solar Magnetized ''Tornadoes'': Relation to Filaments  Electron acceleration during three-dimensional relaxation of an electron beam-return current plasma system in a magnetic field  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University