E-Print Archive

There are 4524 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Numerical simulations of Magnetoacoustic-Gravity Waves in the Solar Atmosphere View all abstracts by submitter

Ramon Oliver   Submitted: 2012-08-19 10:14

We investigate the excitation of magnetoacoustic-gravity waves generated from localized pulses in the gas pressure as well as in vertical component of velocity. These pulses are initially launched at the top of the solar photosphere that is permeated by a weak magnetic field. We investigate three different configurations of the background magnetic field lines: horizontal, vertical and oblique to the gravitational force. We numerically model magnetoacoustic-gravity waves by implementing a realistic (VAL-C) model of solar temperature. We solve two-dimensional ideal magnetohydrodynamic equations numerically with the use of the FLASH code to simulate the dynamics of the lower solar atmosphere. The initial pulses result in shocks at higher altitudes. Our numerical simulations reveal that a small-amplitude initial pulse can produce magnetoacoustic-gravity waves, which are later reflected from the transition region due to the large temperature gradient. The atmospheric cavities in the lower solar atmosphere are found to be the ideal places that may act as a resonator for various oscillations, including their trapping and leakage into the higher atmosphere. Our numerical simulations successfully model the excitation of such wave modes, their reflection and trapping, as well as the associated plasma dynamics.

Authors: K. Murawski, A. K. Srivastava, J. A. McLaughlin, R. Oliver
Projects: None

Publication Status: Solar Physics (submitted)
Last Modified: 2012-08-21 19:06
Go to main E-Print page  Magnetically Driven Flows in Arched Plasma Structures  SDO/AIA Detection of Solar Prominence Formation within a Coronal Cavity  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University