E-Print Archive

There are 4089 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Deflection of the Two Interacting Coronal Mass Ejections of 2010 May 23-24 as Revealed by Combined In situ Measurements and Heliospheric Imaging View all abstracts by submitter

No Lugaz   Submitted: 2012-09-24 09:29

In 2010 May 23-24, SDO observed the launch of two successive coronal mass ejections (CMEs), which were subsequently tracked by the SECCHI suite onboard STEREO. Using the COR2 coronagraphs and the heliospheric imagers (HIs), the initial direction of both CMEs is determined to be slightly west of the Sun-Earth line. We derive the CME kinematics, including the evolution of the CME expansion until 0.4 AU. We find that, during the interaction, the second CME decelerates from a speed above 500 km s-1 to 380 km s-1 the speed of the leading edge of the first CME. STEREO observes a complex structure composed of two different bright tracks in HI2-A but only one bright track in HI2-B. In situ measurements from Wind show an ''isolated'' ICME, with the geometry of a flux rope preceded by a shock. Measurements in the sheath are consistent with draping around the transient. By combining remote-sensing and in situ measurements, we determine that this event shows a clear instance of deflection of two CMEs after their collision, and we estimate the deflection of the first CME to be about 10 degrees towards the Sun-Earth line. The arrival time, arrival speed and radius at Earth of the first CME are best predicted from remote-sensing observations taken before the collision of the CMEs. Due to the over-expansion of the CME after the collision, there are few, if any, signs of interaction in in situ measurements. This study illustrates that complex interactions during the Sun-to-Earth propagation may not be revealed by in situ measurements alone.

Authors: N. Lugaz, C. J. Farrugia, J. A. Davies, C. Möstl, C. J. Davis, I. I. Roussev, M. Temmer
Projects: STEREO,Wind

Publication Status: accepted to Astrophysical Journal
Last Modified: 2012-09-24 11:12
Go to main E-Print page  Interchange reconnection in a turbulent Corona  Are Decaying Magnetic Fields Above Active Regions Related To Coronal Mass Ejection Onset?  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University