E-Print Archive

There are 4021 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. II. Nonlinear Force-Free Approximation View all abstracts by submitter

Manolis K. Georgoulis   Submitted: 2012-09-26 02:44

Expanding on an earlier work that relied on linear force-free magnetic fields, we self-consistently derive the instantaneous free magnetic energy and relative magnetic helicity budgets of an unknown three-dimensional nonlinear force-free magnetic structure extending above a single, known lower-boundary magnetic field vector. The proposed method does not rely on the detailed knowledge of the three-dimensional field configuration but is general enough to employ only a magnetic connectivity matrix on the lower boundary. The calculation yields a minimum free magnetic energy and a relative magnetic helicity consistent with this free magnetic energy. The method is directly applicable to photospheric or chromospheric vector magnetograms of solar active regions. Upon validation, it basically reproduces magnetic energies and helicities obtained by well-known, but computationally more intensive and non-unique, methods relying on the extrapolated three-dimensional magnetic field vector. We apply the method to three active regions, calculating the photospheric connectivity matrices by means of simulated annealing, rather than a model-dependent nonlinear force-free extrapolation. For two of these regions we correct for the inherent linear force-free overestimation in free energy and relative helicity that is larger for larger, more eruptive, active regions. In the third studied region, our calculation can lead to a physical interpretation of observed eruptive manifestations. We conclude that the proposed method, including the proposed inference of the magnetic connectivity matrix, is practical enough to contribute to a physical interpretation of the dynamical evolution of solar active regions.

Authors: M. K. Georgoulis, K. Tziotziou, & N.-E. Raouafi
Projects: Hinode/SOT

Publication Status: ApJ, in press
Last Modified: 2012-09-26 09:10
Go to main E-Print page  The Magnetic Energy - Helicity Diagram of Solar Active Regions  Verification of the travel time measurement technique and the helioseismic inversion procedure for sound speed using artificial data  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University