E-Print Archive

There are 4100 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetoacoustic waves in a vertical flare current-sheet in a gravitationally stratified solar atmosphere View all abstracts by submitter

Petr Jelinek   Submitted: 2012-10-02 09:29

We numerically studied evolution of impulsively generated magnetoacoustic waves in the vertical flare current-sheet that is embedded in the gravitationally stratified solar atmosphere and compared it with its gravity-free counterpart. We adopted a two-dimensional (2D) magnetohydrodynamic (MHD) model, in which we solved a full set of ideal time-dependent MHD equations by means of the FLASH code, using the adaptive mesh refinement (AMR) method. To initiate the fast sausage magnetoacoustic waves, we used axisymmetric Gaussian velocity perturbation. As a diagnostic tool of these magnetoacoustic waves, we used the wavelet analysis method. We present a model of magnetoacoustic wave propagation with a gravity that is more realistic than that presented in previous studies. We compare our results with those of a gravity-free case. In equilibrium the current-sheet with gravity requires a non-zero horizontal component of the magnetic field, contrary to the gravity-free case. This causes differences in the parameters of the wave signal that propagates along the current sheet. In addition to these differences we find that wave signal variations and their wavelet tadpoles are more complex in the case with gravity than in the gravity-free case. Furthermore, for a shorter scale-height we found a prolongation of the wavelet tadpoles. These differences result from a variation of the dispersive properties and group velocities of the propagating magnetoacoustic waves with height in the solar atmosphere in the gravitational case. We show that these results can affect the diagnostics of physical processes in solar flares.

Authors: P. Jelinek, M. Karlický, K. Murawski
Projects: None

Publication Status: Astron. Astrophys. 546, A49 (2012)
Last Modified: 2012-10-02 10:51
Go to main E-Print page  What have we learned from helioseismology, what have we really   learned, and what do we aspire to learn?  A Database of >20 keV Electron Green's Functions of Interplanetary Transport at 1 AU  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University