E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
What have we learned from helioseismology, what have we really learned, and what do we aspire to learn? View all abstracts by submitter

Douglas Gough   Submitted: 2012-10-02 10:41

Helioseismology has been widely acclaimed as having been a great success: it appears to have answered nearly all the questions that we originally asked, some with unexpectedly high precision. We have learned how the sound speed and matter density vary throughout almost all of the solar interior - which not so very long ago was generally considered to be impossible - we have learned how the Sun rotates, and we have a beautiful picture, on a coffee cup, of the thermal stratification of a sunspot, and also an indication of the material flow around it. We have tried, with some success at times, to apply our findings to issues of broader relevance: the test of the General Theory of Relativity via planetary orbit precession (now almost forgotten because the issue has convincingly been closed, albeit no doubt temporarily), the solar neutrino problem, the manner of the transport of energy from the centre to the surface of the Sun, the mechanisms of angular-momentum redistribution, and the workings of the solar dynamo. The first two were of general interest to the broad scientific community beyond astronomy, and were, quite rightly, principally responsible for our acclaimed success; the others are still in a state of flux.

Authors: Douglas Gough
Projects: None

Publication Status: to appear in Solar Physics
Last Modified: 2012-10-02 10:51
Go to main E-Print page  Magnetic Field Structures Triggering Solar Flares and Coronal Mass Ejections   Magnetoacoustic waves in a vertical flare current-sheet in a gravitationally stratified solar atmosphere  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University