E-Print Archive

There are 4291 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Improved basis set for low frequency plasma waves View all abstracts by submitter

Paul Bellan   Submitted: 2012-10-25 16:38

It is shown that the low frequency plasma wave equation [Stringer, Plasma Physics 5, 89(1963)] can be obtained much more directly than by the previously used method of solving for the determinant of a matrix involving the three components of the electric field vector. The more direct method uses a two-dimensional current density vector space that is precisely equivalent to the previously used three-dimensional electric field vector space. Unlike the electric field, the current density is restricted by the quasi-neutrality condition to a two-dimensional vector space. Comparison with previously obtained dispersion relations is provided and a method is presented for obtaining exact analytic solutions for the three roots of the cubic dispersion relation. The commonly used kinetic Alfvén dispersion relation is shown to be valid only for near-perpendicular propagation in a low beta plasma. It is shown that at a cross-over point where the perpendicular wave phase velocity equals the ion acoustic velocity, the coupling between Alfvén and fast modes vanishes and the Alfvén mode reverts to its cold form even in situations where the Alfvén velocity is smaller than the electron thermal velocity. A method is prescribed by which measurement of wave electric current density completely eliminates the space-time ambiguity previously believed to be an unavoidable shortcoming of single-spacecraft frequency measurements.

Authors: P. M. Bellan
Projects: None

Publication Status: accepted for publication in JGR-Space Physics
Last Modified: 2012-10-26 14:54
Go to main E-Print page  Solar flare hard X-ray spikes observed by RHESSI: a case study  Measurements of electron anisotropy in solar flares using albedo with RHESSI X-ray data.  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare
Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University