E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Gamma-rays and the evolving, compact structures of the 2003/10/28 X17 flare View all abstracts by submitter

Karel Schrijver   Submitted: 2006-06-05 08:55

The X17 flare on 2003/10/28 was observed by high-resolution imaging or spectroscopic instruments on CORONAS, GOES, INTEGRAL, RHESSI, SOHO, and TRACE. These spacecraft observed the temporal evolution of the gamma-ray positron-annihilation and nuclear de-excitation line spectra, imaged the hard-X-ray bremsstrahlung and EUV and UV emission, and measured the surface magnetic field and subphotospheric pressure perturbations. In the usual pattern, the onset of the flare is dominated by particle acceleration and interaction, and by the filling of coronal magnetic structures with hot plasma. The associated positron annihilation signatures early in the impulsive phase from 11:06 UT to 11:16 UT have a line-broadening temperature characteristic of a few hundred thousand Kelvin. The most intense precipitation sites within the extended flare ribbons are very compact, with diameters of less than 1,400 km and a 195A TRACE intensity that can exceed 7,500x the quiescent active-region value. These regions appear to move at speeds of up to 60 km s-1. The associated rapidly-evolving, compact perturbations of the photosphere below these sites excite acoustic pulses that propagate into the solar interior. Less intense precipitation sites persist typically for several minutes behind the advancing flare ribbons. After ~1 ksec, the flare enters a second phase, dominated by coronal plasma cooling and downflows, and by annihilation line radiation characteristic of a photospheric environment. We point out 1) that these detailed observations underscore that flare models need to explicitly incorporate the multitude of successively excited eftwo{environments whose evolving signals differ at least in their temporal offsets and energy budgets if not also in the exciting particle populations and penetration depths}, and 2) that the spectral signatures of the positron annihilation do not fit conventional model assumptions.

Authors: C.J. Schrijver, H.S. Hudson, R.J. Murphy, G.H. Share, and T.D. Tarbell
Projects: TRACE

Publication Status: Accepted for publication in the Astrophysical Journal
Last Modified: 2006-06-06 14:29
Go to main E-Print page  The effect of the electric field induced by precipitating electron beams on hard X-ray photon and mean electron spectra  An Investigation into the Variability of Heating in a Solar Active Region  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University